Cellular Activation (cellular + activation)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predator

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2009
Daniele Cristina Aguiar
Abstract Innate fear stimulus induces activation of neurons containing the neuronal nitric oxide synthase enzyme (nNOS) in defensive-related brain regions such as the dorsolateral periaqueductal gray (dlPAG). Intra-dlPAG administration of nitric oxide synthase (NOS) inhibitors and glutamate antagonists induce anxiolytic-like responses. We investigated the involvement of nitric oxide (NO) and glutamate neurotransmission in defensive reactions modulated by dlPAG. We tested if intra-dlPAG injections of the selective nNOS inhibitor, N-propyl- L -arginine (NP), or the glutamate antagonist, AP7 (2-amino-7-phosphonoheptanoic acid), would attenuate behavioral responses and cellular activation induced by predator exposure (cat). Fos-like immunoreactivity (FLI) was used as a marker of neuronal functional activation, whereas nNOS immunohistochemistry was used to identify NOS neurons. Cat exposure induced fear responses and an increase of FLI in the dlPAG and dorsal premammillary nucleus (PMd). NP and AP7 attenuated the cat-induced behavioral responses. Whereas NP tended to attenuate FLI in the dlPAG, AP7 induced a significant reduction in cellular activation of this region. The latter drug, however, increased FLI and double-labeled cells in the PMd. Cellular activation of this region was significantly correlated with time spent near the cat (r = 0.7597 and 0.6057 for FLI and double-labeled cells). These results suggest that glutamate/NO-mediated neurotransmission in the dlPAG plays an important role in responses elicit by predator exposure. Blocking these neurotransmitter systems in this brain area impairs defensive responses. The longer time spent near the predator that follows AP7 effect could lead to an increased cellular activation of the PMd, a more rostral brain area that has also been related to defensive responses. © 2009 Wiley-Liss, Inc. [source]


Cellular activation by plasmid DNA in various macrophages in primary culture

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2008
Hiroyuki Yoshida
Abstract Macrophages are an important group of cells responsible for the inflammatory response to unmethylated CpG dinucleotide (CpG motif) in plasmid DNA (pDNA) via Toll-like receptor 9 (TLR9). This finding is primarily based on in vitro studies. Previous in vivo studies also have suggested that tissue macrophages are involved in inflammatory cytokine release in the circulation following intravenous administration of pDNA to mice. However, the relationship between the in vitro and in vivo studies has not been sufficiently clarified. To gain insight into which types of cells are responsible for the production of cytokines upon interaction with pDNA, peritoneal macrophages, splenic macrophages, hepatic nonparenchymal cells (NPCs) including Kupffer cells and mesangial cells were isolated from mice. All types of primary cultured cells, except for mesangial cells, express TLR9 at varying levels. Splenic macrophages and hepatic NPCs were activated to produce tumor necrosis factor-, (TNF-,) by naked pDNA, whereas peritoneal macrophages and mesangial cells were not. pDNA complexed with N -[1-(2,3-dioleyloxy)propyl]- N,N,N -trimethyl-ammonium chloride/cholesterol liposome induced TNF-, in the splenic macrophages but not in the other cell types. These results indicate that splenic macrophages and hepatic NPCs are closely involved in TNF-, production in response to pDNA. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4575,4585, 2008 [source]


CSRP2, TIMP-1, and SM22, promoter fragments direct hepatic stellate cell-specific transgene expression in vitro, but not in vivo

LIVER INTERNATIONAL, Issue 1 2004
Jens Herrmann
Abstract: Background/Aims: The activation of hepatic stellate cells (HSC) and their transdifferentiation into myofibroblasts (MFB) is the key step for development of liver fibrosis. Over the past several years, significant progress has been made in the understanding of the critical pathways involved incells undergoing activation. Cellular activation in the course of transdifferentiation involves, among other biochemical modifications, functionally relevant changes in the control of gene expression. These include the up-regulation of transcription factors, different extracellular matrix proteins, cell adhesion molecules, smooth muscle specific genes, and proteins involved in matrix remodelling, or cytoskeletal organization. The corresponding regulatory elements of these genes have afforded us the opportunity to express transgenes with antifibrotic potential in a cell type- and/or transdifferentiation-dependent manner. Methods: In the present study, we have tested several promoters for their ability to mediate cell-specific expression, including those for CSRP2, SM22,, and TIMP-1 (CSRP2, gene encoding the LIM domain protein CRP2; SM22,, smooth muscle-specific gene encoding a 22-kDa protein; TIMP-1, gene encoding the tissue inhibitor of metalloproteinases-1), which in liver are specifically expressed in HSC or become strongly activated during the acute remodelling into MFB. We constructed adenoviral reporter vectors in which relevant portions of the promoters were fused to the green fluorescent protein. Results and Conclusion: Our experiments demonstrate that each of these promoters is sufficient to achieve strong or partially selective expression in vitro but none is able to direct a specific or inducible expression of transgenes in HSC/MFB in vivo. [source]


REVIEW ARTICLE: Immunological Modes of Pregnancy Loss

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 6 2010
Joanne Kwak-Kim
Citation Kwak-Kim J, Park JC, Ahn HK, Kim JW, Gilman-Sachs A. Immunological modes of pregnancy loss. Am J Reprod Immunol 2010 During the implantation period, a significant portion of embryos are lost and eventually less than half of clinically established pregnancies end as full-term pregnancies without obstetrical complications. A significant portion of these pregnancy losses is associated with immune etiologies, including autoimmune and cellular immune abnormalities. Although an autoimmune etiology such as anti-phospholipid antibodies (APAs) has been reported to induce placental infarct and thrombosis at maternal,fetal interface, APAs induce inflammatory immune responses as well. Inflammatory immune responses, such as increased proportions of NK cells and Th1/Th2 cell ratios in peripheral blood are related to recurrent pregnancy losses and multiple implantation failures. Systemic and local inflammatory immune responses seem to be induced by activation of Toll-like receptors with infectious agents, fetal cell debris, or gonadotropin-releasing hormone agonist, etc. Cellular activation of T and NK cells leads to pro-inflammatory cytokine storm and consequently, placental infarction and thrombosis. Potential application of anti-inflammatory therapeutic agents for the prevention of pregnancy losses should be explored further. [source]


FCRL6 distinguishes mature cytotoxic lymphocytes and is upregulated in patients with B-cell chronic lymphocytic leukemia

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2008
Daniel M. Schreeder
Abstract Fc receptor-like 6 (FCRL6), the most recently characterized member of the FCRL family, is a cell surface glycoprotein with tyrosine-based regulatory potential. An extensive survey of human hematopoietic tissues disclosed that FCRL6 expression by NK- and T-cell subpopulations increases as a function of differentiation and is remarkably restricted to mature lymphocytes with cytotoxic capability. In particular, FCRL6 distinguishes perforin-expressing CD56dim NK cells, V,1+ and V,2+ ,, T cells, effector and effector memory CD8+ T cells, and rare cytotoxic CD4+ T cells in adult tissues. Analysis of this receptor in B-cell chronic lymphocytic leukemia (CLL) was also performed. FCRL6 was found to mark significantly expanded populations of cytotoxic CD8+ T, CD4+ T, and NK cells in patients with CLL. Despite sequence homology with the known Fc receptors for IgG and IgE, FCRL6 did not bind Ig. Although FCRL6 can be tyrosine-phosphorylated, its antibody-mediated ligation was unable to influence cellular activation. Collectively, these results demonstrate that FCRL6 is a distinct indicator of cytotoxic effector lymphocytes that is upregulated in diseases characterized by chronic immune stimulation. [source]


Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation

FEBS JOURNAL, Issue 17 2006
Dario O. Passos
The human 57 kDa Ki-1 antigen (Ki-1/57) is a cytoplasmic and nuclear protein, associated with Ser/Thr protein kinase activity, and phosphorylated at the serine and threonine residues upon cellular activation. We have shown that Ki-1/57 interacts with chromo-helicase DNA-binding domain protein 3 and with the adaptor/signaling protein receptor of activated kinase 1 in the nucleus. Among the identified proteins that interacted with Ki-1/57 in a yeast two-hybrid system was the protein arginine-methyltransferase-1 (PRMT1). Most interestingly, when PRMT1 was used as bait in a yeast two-hybrid system we were able to identify Ki-1/57 as prey among 14 other interacting proteins, the majority of which are involved in RNA metabolism or in the regulation of transcription. We found that Ki-1/57 and its putative paralog CGI-55 have two conserved Gly/Arg-rich motif clusters (RGG/RXR box, where X is any amino acid) that may be substrates for arginine-methylation by PRMT1. We observed that all Ki-1/57 protein fragments containing RGG/RXR box clusters interact with PRMT1 and are targets for methylation in vitro. Furthermore, we found that Ki-1/57 is a target for methylation in vivo. Using immunofluorescence experiments we observed that treatment of HeLa cells with an inhibitor of methylation, adenosine-2,,3,-dialdehyde (Adox), led to a reduction in the cytoplasmic immunostaining of Ki-1/57, whereas its paralog CGI-55 was partially redistributed from the nucleus to the cytoplasm upon Adox treatment. In summary, our data show that the yeast two-hybrid assay is an effective system for identifying novel PRMT arginine-methylation substrates and may be successfully applied to other members of the growing family of PRMTs. [source]


Anti-inflammatory effects in the skin of thymosin-,4 splice-variants

IMMUNOLOGY, Issue 1 2003
Michael Girardi
Summary The intraepithelial lymphocyte (IEL) network of T-cell receptor ,,+ (V,5+) dendritic epidermal T cells (DETC) in murine skin down-regulates cutaneous inflammation, although the mechanism is unknown. Thymosin-,4 (T,4), identified by serial analysis of gene expression as a predominant transcript in gut IEL, encodes both a ubiquitous actin-binding protein (UT,4) with demonstrated capacity to inhibit neutrophilic infiltration, and a splice-variant limited to lymphoid tissue (LT,4) with unknown bioactivity. Freshly isolated V,5+ DETCs expressed both forms, while only LT,4 was preferentially up-regulated after cellular activation in vitro. To compare the anti-inflammatory properties of LT,4 and UT,4 in the skin in vivo, the biological activities of synthesized polypeptides were assessed using three different strategies: neutrophil infiltration by footpad ,-carrageenan injection; irritant contact dermatitis to 12-O-tetradecanoylphorbol 13-acetate; and allergic contact dermatitis to 2,4-dinitrofluorobenzene. These studies clearly showed that the anti-inflammatory activities of LT,4 were broader and most often stronger than those of UT,4. Thus, the activation-responsive expression of the lymph-specific form of T,4 may be one mechanism by which DETC, and possibly other IELs, down-regulate local inflammation. [source]


B-lymphocyte subpopulations are equally susceptible to Epstein,Barr virus infection, irrespective of immunoglobulin isotype expression

IMMUNOLOGY, Issue 4 2003
Barbro Ehlin-Henriksson
Summary While Epstein,Barr virus (EBV) is known to establish latency in the memory B-cell compartment, there is controversy as to whether the memory or the naïve B cell is the initial target for infection. Here we have explored the infectability of the B-cell subsets contained in peripheral blood and tonsils, as distinguished by their surface expression of the immunoglobulin isotypes that help to define naïve and memory pools. First we show that both CD21 and major histocompatibility complex (MHC) class II molecules , respectively, the major receptor and co-receptor for EBV on B cells , are expressed at similar levels on blood and tonsillar B cells, irrespective of surface immunoglobulin class, indicating that each of the subsets demonstrate an equal potential, at least for infection. Then, following in vitro infection of total tonsillar B cells, we found that the relative frequencies of immunoglobulin (Ig)M-, IgG- and IgA-positive cells containing EBV-encoded Epstein,Barr virus nuclear antigen 5 (EBNA5) protein at 48 hr were similar to those of the starting population. However, IgD expression was uniformly decreased, probably as a consequence of cellular activation. These data indicate that recirculating B cells have both the potential for, and susceptibility to, initial infection by EBV, irrespective of the immunoglobulin isotype expressed. [source]


A carbohydrate neoepitope that is up-regulated on human mononuclear leucocytes by neuraminidase treatment or by cellular activation

IMMUNOLOGY, Issue 2 2001
Mark T. Quinn
Summary The expression of cell-surface antigens can delineate specific leucocyte developmental or functional stages. For example, certain membrane glycoproteins are expressed selectively on leucocyte subsets only after activation. Leucocyte activation can also induce changes in carbohydrate epitopes expressed on surface antigens. In the present studies, we report on a novel monoclonal immunoglobulin M antibody (mAb 13.22) that recognizes a unique carbohydrate epitope expressed on human leucocyte membrane proteins. Characterization of mAb 13.22 specificity by immunoblotting showed that it recognized proteins of MW ,95 000 and 150 000, including both CD18 and CD11b. The mAb 13.22 epitope was removed by N -glycosidase F but not by endoglycosidase H or fucosidase, demonstrating that it is an N-linked carbohydrate antigen. Interestingly, immunoblot staining was enhanced after neuraminidase treatment, suggesting that the antibody epitope might also be partially masked by sialic acid. In resting leucocytes, the mAb 13.22 antigen was expressed strongly on neutrophils, while dull staining was present on monocytes, and no lymphocyte staining was observed. In marked contrast, treatment of leucocytes with neuraminidase resulted in exposure of a mAb 13.22 neoepitope on a subset of lymphocytes (primarily T lymphocytes and natural killer cells) as well as up-regulated staining more than 18-fold on monocytes. Activation of lymphocytes in culture with phytohaemagglutinin or concanavalin A also unmasked the mAb 13.22 neoepitope on ,37% of the CD45RO+ lymphocytes. Furthermore, analysis of leucocytes collected from the synovial fluid of patients with rheumatoid arthritis showed that ,18% of the lymphocytes present expressed the mAb 13.22 neoepitope. Taken together, our results suggest that the mAb 13.22 carbohydrate neoepitope could represent a physiologically relevant marker that is up-regulated on leucocyte subsets during the inflammatory response. [source]


The proportion of CD40+ mucosal macrophages is increased in inflammatory bowel disease whereas CD40 ligand (CD154)+ T cells are relatively decreased, suggesting differential modulation of these costimulatory molecules in human gut lamina propria

INFLAMMATORY BOWEL DISEASES, Issue 11 2006
Dr. Hege S. Carlsen MD
Abstract Background: Signal transduction through binding of CD40 on antigen-presenting cells and CD40 ligand (CD154) on T cells appears to be crucial for mutual cellular activation. Antibodies aimed at blocking the CD40,CD154 costimulatory pathway dampen the severity of experimental colitis. To elucidate the microanatomical basis for signaling through this costimulatory pathway in human inflammatory bowel disease, we studied in situ the cellular distribution of these 2 molecules on lamina propria macrophages and T cells, respectively. Methods: Colonic specimens from 8 patients with ulcerative colitis and 8 with Crohn's disease, 8 small bowel specimens of Crohn's disease, and histologically normal control samples (6 from colon and 6 from small bowel) were included. Multicolor immunofluorescence in situ staining was performed to determine the percentage of subepithelial macrophages expressing CD40 and that of lamina propria T cells expressing CD154 while avoiding cells in lymphoid aggregates. Results: The proportion of subepithelial CD40highCD68+ macrophages was significantly increased in normal colon compared with normal small bowel and showed further elevation in both colon and small bowel afflicted with inflammatory bowel disease. In addition, on a per-CD68+ -cell basis, CD40 expression was significantly increased in severely inflamed compared with moderately inflamed colonic specimens. Conversely, the proportion of CD154+ T cells was similar in colon and small bowel, and interestingly, it was significantly reduced in colonic inflammatory bowel disease. Conclusions: Our findings suggested that modulation of CD40 expression by subepithelial macrophages and CD154 by lamina propria T cells is inversely modulated in the human gut. [source]


Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predator

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2009
Daniele Cristina Aguiar
Abstract Innate fear stimulus induces activation of neurons containing the neuronal nitric oxide synthase enzyme (nNOS) in defensive-related brain regions such as the dorsolateral periaqueductal gray (dlPAG). Intra-dlPAG administration of nitric oxide synthase (NOS) inhibitors and glutamate antagonists induce anxiolytic-like responses. We investigated the involvement of nitric oxide (NO) and glutamate neurotransmission in defensive reactions modulated by dlPAG. We tested if intra-dlPAG injections of the selective nNOS inhibitor, N-propyl- L -arginine (NP), or the glutamate antagonist, AP7 (2-amino-7-phosphonoheptanoic acid), would attenuate behavioral responses and cellular activation induced by predator exposure (cat). Fos-like immunoreactivity (FLI) was used as a marker of neuronal functional activation, whereas nNOS immunohistochemistry was used to identify NOS neurons. Cat exposure induced fear responses and an increase of FLI in the dlPAG and dorsal premammillary nucleus (PMd). NP and AP7 attenuated the cat-induced behavioral responses. Whereas NP tended to attenuate FLI in the dlPAG, AP7 induced a significant reduction in cellular activation of this region. The latter drug, however, increased FLI and double-labeled cells in the PMd. Cellular activation of this region was significantly correlated with time spent near the cat (r = 0.7597 and 0.6057 for FLI and double-labeled cells). These results suggest that glutamate/NO-mediated neurotransmission in the dlPAG plays an important role in responses elicit by predator exposure. Blocking these neurotransmitter systems in this brain area impairs defensive responses. The longer time spent near the predator that follows AP7 effect could lead to an increased cellular activation of the PMd, a more rostral brain area that has also been related to defensive responses. © 2009 Wiley-Liss, Inc. [source]


Advanced molecular immunoassay system for immunobiotic lactic acid bacteria using a transfectant of Toll-like receptor 2

ANIMAL SCIENCE JOURNAL, Issue 2 2007
Masanori TOHNO
ABSTRACT Toll-like receptor 2 (TLR2) is a receptor for a variety of microbial components, and it also mediates activation signals in the cell relating to the innate immune system. In order to evaluate the precise molecular immunoregulation by various strains of lactic acid bacteria (LAB) via TLR2, the swine TLR2 (sTLR2)-expressing transfectant was constructed using human embryonic kidney (HEK) 293 cells. It is demonstrated that intact immunobiotic LAB can induce immune responses through TLR2, and that different nuclear factor-,B (NF-,B) activities of various strains can be accurately detected by sTLR2-expressing HEK293 cells. Furthermore, cellular activation of NF-,B via TLR2 is reflected in enhanced binding and uptake of LAB. The sTLR2-expressing HEK293 cells were also useful for characterizing the expression pattern of type I helper T (Th1) and type II helper T (Th2) cytokines by the stimulation of immunobiotic LAB. These results suggest that sTLR2-expressing HEK293 cells may be useful in certain molecular immunoassay systems for producing new physiologically functional foods with intestinal immunomodulatory abilities, such as the maintenance of Th1/Th2 polarization. [source]


Knockdown of Fc, receptor III in an arthritic temporomandibular joint reduces the nociceptive response in rats

ARTHRITIS & RHEUMATISM, Issue 10 2010
Phillip R. Kramer
Objective Fc, receptor III (Fc,RIII; CD16) is a receptor expressed on immune cells that selectively binds IgG molecules. IgG binding results in cellular activation and cytokine release. IgG is an important factor in arthritis and can be found in the arthritic temporomandibular joint (TMJ). We undertook this study to test the hypothesis that a reduction in Fc,RIII expression in TMJ tissues would reduce the nociceptive and inflammatory responses in an inflamed joint. Methods Small interfering RNA (siRNA), either naked or complexed with linear polyethyleneimine, was injected into the superior joint space of the TMJ in rats. After administration of siRNA the joint was injected with saline or with Freund's complete adjuvant to induce arthritis. Nociceptive responses were quantitated in the rat by measuring the animal's meal duration. Fc,RIII expression in the TMJ tissue was assayed by immunocytochemistry or Western blotting. Cleavage of Fc,RIII transcript was then assayed by 5, rapid amplification of complementary DNA ends. Interleukin-1, (IL-1,) and IgG content was measured in the TMJ tissue by enzyme-linked immunosorbent assay. Results Injection of Fc,RIII siRNA reduced the amount of Fc,RIII in the TMJ tissues, and the transcript was cleaved in a manner consistent with an RNA interference mechanism. Moreover, injection of Fc,RIII siRNA reduced the nociceptive response of rats with an arthritic TMJ and reduced the amount of the proinflammatory cytokine IL-1,. Conclusion Fc,RIII contributes to the pain resulting from inflammatory arthritis of the TMJ, and siRNA has the potential to be an effective treatment for this disorder. [source]


Glucocorticoids increase ,5 integrin expression and adhesion of synovial fibroblasts but inhibit ERK signaling, migration, and cartilage invasion

ARTHRITIS & RHEUMATISM, Issue 12 2009
Torsten Lowin
Objective In rheumatoid arthritis (RA), integrins mediate cell adhesion, migration, and invasion, and their expression is regulated by cytokines and growth factors. The aim of this study was to investigate whether hormones such as cortisol or other steroids can influence integrin expression and function in the synovial cells of patients with RA. Methods We performed immunofluorescence and fluorescence-activated cell sorting analyses to quantify surface integrin levels. Adhesion and migration assays were performed to study the function of synovial fibroblasts (SFs). ERK activation was measured by cellular activation of a signaling enzyme-linked immunosorbent assay. Invasion of SFs into cartilage was determined in the SCID mouse coimplantation model of RA in vivo. Results In RA, expression of integrin subunits ,5, ,v, and ,1 was higher at the site of invasion compared with the sublining zone. Testosterone and 17,-estradiol had no influence on integrin levels, but cortisol up-regulated expression of the ,5 subunit in a time-dependent and dose-dependent manner. In addition, cortisol increased the adhesion of SFs to fibronectin and inhibited ERK signaling upon integrin activation or upon stimulation with tumor necrosis factor. Small interfering RNA or a neutralizing antibody to ,5 integrin increased SF migration, indicating that up-regulated ,5 integrin is responsible for an immobile phenotype. In addition, in the SCID mouse model, SF invasion into cartilage was attenuated by glucocorticoid treatment in vivo. Conclusion Glucocorticoids increase integrin expression and the adhesion of cells to fibronectin, inhibit ERK signaling, and down-regulate the invasiveness of SFs in vivo. This study demonstrates that an important antiinflammatory aspect of glucocorticoids is regulating the expression and function of ,5 integrin. [source]


Infiltrating cells, related cytokines and chemokine receptors in lesional skin of patients with dermatomyositis

BRITISH JOURNAL OF DERMATOLOGY, Issue 4 2004
M. Caproni
Summary Background, There have been only two reports on immunophenotypic characterization in the cutaneous lesions of dermatomyositis (DM) that emphasize the importance of the infiltrating CD4+ T lymphocytes. Objectives, To characterize the immunophenotype of the cells that infiltrate the lesional skin of DM and to evaluate the possible T-helper (Th) polarization Th1/Th2 through detection of specific cytokines, chemokine receptors and markers of cellular activation. Methods, Skin biopsy specimens derived from pathognomonic lesions (Gottron's papules and Gottron's sign) of eight patients with DM were immunostained with a large panel of monoclonal antibodies to CD3, CD4, CD8, myeloperoxidase (MPO), eosinophil cationic protein, tryptase, CD40, CD40 ligand (CD40L), HLA-DR, interleukin (IL)-2, IL-4, IL-5, IL-13, interferon-,, tumour necrosis factor-,, receptor 3 for CXC chemokines (CXCR3) and receptor 3 for CC chemokines, using the alkaline phosphatase,antialkaline phosphatase method. Control specimens were obtained from five healthy subjects and from six patients with discoid lupus erythematosus. Results, Activated CD4+ Th lymphocytes (HLA-DR+ CD40L+) were the principal infiltrating cells in the lesional skin of DM; the CD4/CD8 ratio was approximately 2·5. A mixed Th1/Th2 profile and higher Th1 cytokine production together with significant staining for CXCR3 were detected. Neutrophil granulocytes were the second most abundant population; eosinophil granulocytes were very poorly represented. Conclusions, Activated CD4+ T cells presumably mediate the main pathogenetic mechanisms in pathognomonic skin lesions. The interaction between CD40 and CD40L could be an important mechanism of cellular activation in cutaneous immune-mediated inflammation by induction of secretion of proinflammatory cytokines and chemokines. Neither Th1 nor Th2 clear polarization was found, although there was a slight Th1 prevalence. There was a significant quantity of MPO+ cells (neutrophil granulocytes) in the inflamed tissue, and they might have a role in sustaining the chronic inflammation. [source]


Effects of heparin and related molecules upon neutrophil aggregation and elastase release in vitro

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2003
Rachel A Brown
Neutrophil-derived elastase is an enzyme implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Heparin inhibits the enzymatic activity of elastase and here we provide evidence for the first time that heparin can inhibit the release of elastase from human neutrophils. Unfractionated and low molecular weight heparins (UH and LMWH, 0.01,1000 U ml,1) and corresponding concentrations (0.06,6000 ,g ml,1) of nonanticoagulant O-desulphated heparin (ODH), dextran sulphate (DS) and nonsulphated poly- L -glutamic acid (PGA) were compared for their effects on both elastase release from and aggregation of neutrophils. UH, ODH and LMWH inhibited (P<0.05) the homotypic aggregation of neutrophils, in response to both N -formyl-methionyl-leucyl-phenylalanine (fMLP, 10,6M) and platelet-activating factor (PAF, 10,6M), as well as elastase release in response to these stimuli, in the absence and presence of the priming agent tumour necrosis factor-alpha (TNF- ,, 100 U ml,1). DS inhibited elastase release under all the conditions of cellular activation tested (P<0.05) but had no effect on aggregation. PGA lacked efficacy in either assay, suggesting general sulphation to be important in both effects of heparin on neutrophil function and specific patterns of sulphation to be required for inhibition of aggregation. Further investigation of the structural requirements for inhibition of elastase release confirmed the nonsulphated GAG hyaluronic acid and neutral dextran, respectively, to be without effect, whereas the IP3 receptor antagonist 2-aminoethoxydiphenylborate (2-APB) mimicked the effects of heparin, itself an established IP3 receptor antagonist, suggesting this to be a possible mechanism of action. British Journal of Pharmacology (2003) 139, 845,853. doi:10.1038/sj.bjp.0705291 [source]


Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling

CELLULAR MICROBIOLOGY, Issue 3 2005
Holly E. Humphries
Summary The interactions of Neisseria meningitidis with cells of the meninges are critical to progression of the acute, compartmentalized intracranial inflammatory response that is characteristic of meningococcal meningitis. An important virulence mechanism of the bacteria is the ability to shed outer membrane (OM) blebs containing lipopolysaccharide (LPS), which has been assumed to be the major pro-inflammatory molecule produced during meningitis. Comparison of cytokine induction by human meningeal cells following infection with wild-type meningococci, LPS-deficient meningococci or after treatment with OM isolated from both organisms, demonstrated the involvement of non-LPS bacterial components in cell activation. Significantly, recognition of LPS-replete OM did not depend on host cell expression of Toll-like receptor (TLR)4, the accessory protein MD-2 or CD14, or the recruitment of LPS-accessory surface proteins heat shock protein (HSP)70, HSP90,, chemokine receptor CXCR4 and growth differentiation factor (GDF)5. In addition, recognition of LPS-deficient OM was not associated with the expression of TLR2 or any of these other molecules. These data suggest that during meningococcal meningitis innate recognition of both LPS and non-LPS modulins is dependent on the expression of as yet uncharacterized pattern recognition receptors on cells of the meninges. Moreover, the biological consequences of cellular activation by non-LPS modulins suggest that clinical intervention strategies based solely on abrogating the effects of LPS are likely to be only partially effective. [source]


Inhibition of p38 MAP kinase during cellular activation results in IFN-,-dependent augmentation of IL-12 production by human monocytes/macrophages

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2001
J. B. Marriott
Interleukin-12 (IL-12) is a key immunomodulatory cytokine produced by antigen-presenting cells that promotes cellular immunity and enables the generation of protective immunity against intracellular pathogens and tumours. Therefore, modulation of IL-12 activity is a primary immunotherapeutic goal. However, little is known about its regulation. Signalling via p38 MAPK has been implicated in the control of inflammatory responses and is therefore a potential therapeutic target. We have used the highly selective p38 MAPK inhibitor (SB203580) to examine the effect of this pathway on the production of IL-12. Surprisingly, we found that SB203580 strongly up-regulated LPS induced IL-12p40 at the protein (intracellular and secreted) and mRNA levels in PBMC cultures. The effect on IL-12 was apparent using both T cell-independent and T cell-dependent stimuli but not in unstimulated cultures, indicating that activation signals are required. Furthermore, the production of IFN- , by T cells is crucial as production was not increased in LPS-stimulated, purified adherent monocytes/macrophages without the addition of exogenous IFN- ,. These results provide evidence that p38 MAPK has an unexpected suppressive effect on IL-12p40 gene transcription, and suggests interplay between p38 MAPK- and IFN- , -mediated signals in the regulation of IL-12 production by monocytes/macrophages. Furthermore, the importance of IL-12 as a key immunoregulatory cytokine suggests that the clinical application of pyrinidyl imidazole inhibitors, such as SB203580, may need to be reassessed. [source]


Inhibitory effects of glucosamine on lipopolysaccharide-induced activation in microglial cells

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2005
Hyon-Ah Yi
Summary 1.,The aim of the present study was to investigate the effects of glucosamine on lipopolysaccharide (LPS)-induced cellular activation in microglia and to evaluate the inhibitory mechanisms involved. 2.,Lipopolysaccharide (100 ng/mL) was used for the activation of primary cultured rat microglial or BV2 microglial cells. Changes in intracellular Ca2+ levels and outward K+ currents were measured using fura-2/AM and whole-cell patch-clamp methods, respectively. Lipopolysaccharide-induced expression of tumour necrosis factor (TNF)-, mRNA was analysed by reverse transcription,polymerase chain reaction. 3.,Lipopolysaccharide transformed cell morphology into an amoeboid shape in vitro and induced microglial activation in vivo, as measured by immunohistochemical staining, but glucosamine inhibited this activation. Glucosamine also inhibited LPS-induced Ca2+ influx, outward K+ currents and TNF-, mRNA expression, which are typically representative of microglial activation. 4.,The results suggest that the inhibitory mechanisms of glucosamine on LPS-induced microglial activation include inhibition of Ca2+ influx and outward K+ currents, as well as downregulation of the microglial activator gene TNF-,. [source]


Surfactant protein D inhibits mite-induced alveolar macrophage and dendritic cell activations through TLR signalling and DC-SIGN expression

CLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2010
C-F Liu
Summary Background Surfactant protein D (SP-D), a secreted pattern recognition molecule associated with pulmonary innate immunity, has been shown to mediate the clearance of pathogens in multiple ways. However, how SP-D interacts with alveolar macrophages (AMs) and dendritic cells (DCs) during allergen exposure remains unclear. Objective This study was performed to characterize the immunomodulatory effects of SP-D on mite allergen (Dermatophagoides pteronyssinus, Der p)-induced inflammatory signalling in AMs and DCs. Methods Murine AM, alveolar macrophage cell line derived from BALB/c mice (MH-S cells), and human monocyte-derived dendritic cells (MDDC) were used as model systems. The production of nitric oxide (NO) and TNF-,, expression of surface Toll-like receptors (TLRs), and expression of the C-type lectin receptor known as dendritic cell (DC)-specific ICAM-grabbing non-integrin (DC-SIGN) were measured as a function of pretreatment with SP-D and subsequent exposure to Der p. Der p-dependent cellular activations that were modified by SP-D in these model systems were then identified. Results Pretreatment of MH-S cells with SP-D reduced Der p-dependent production of NO, TNF-,, and the downstream activations of IL-1 receptor-associated kinase, mitogen activated protein kinase (MAPK) kinase, and nuclear factor-,B. SP-D interacted with CD14 such that CD14 binding to Der p was inhibited and Der p-induced signalling via TLRs was blocked. DC-SIGN expression was suppressed by Der p in MH-S and MDDC; this down-regulation of DC-SIGN expression was prevented by pretreatment with SP-D. Conclusions These results indicated that the inhibition of Der p-induced activation of MH-S and MDDC by SP-D is mediated through suppression of the CD14/TLR signalling pathway and maintenance of DC-SIGN expression, which may protect allergen-induced airway inflammation. Cite this as: C-F Liu, M. Rivere, H-J Huang, G. Puzo and J-Y Wang, Clinical & Experimental Allergy, 2010 (40) 111,122. [source]