| |||
Cell Volume Regulation (cell + volume_regulation)
Selected AbstractsA role for the volume regulated anion channel in volume regulation in the murine CNS cell line, CADACTA PHYSIOLOGICA, Issue 2 2010V. L. Harvey Abstract Aim:, The role of the volume regulated anion channel (VRAC) in a model CNS neuronal cell line, CAD, was investigated. Methods:, Changes in cell volume following hypotonic challenges were measured using a video-imaging technique. The effect of the Cl, channel antagonists tamoxifen (10 ,m) and 4,4,-diisothiocyanatostilbene-2,2,-disulphonic acid (DIDS; 100 ,m) on regulatory volume decrease (RVD) were measured. The whole-cell voltage-clamp technique was used to characterize IClswell, the current underlying the VRAC. Results:, Using the video-imaging technique, CAD cells were found to swell and subsequently exhibit RVD when subjected to a sustained hypotonic challenge from 300 mOsmol kg,1 H2O to 210 mOsmol kg,1 H2O. In the presence of tamoxifen (10 ,m) or DIDS (100 ,m) RVD was abolished, suggesting a role for the VRAC. A hypotonic solution (230 mOsmol kg,1 H2O) evoked IClswell, an outwardly rectifying current displaying time-independent activation, which reversed upon return to isotonic conditions. The reversal potential (Erev) for IClswell was ,14.7 ± 1.4 mV, similar to the theoretical Erev for a selective Cl, conductance. IClswell was inhibited in the presence of DIDS (100 ,m) and tamoxifen (10 ,m), the DIDS inhibition being voltage dependent. Conclusions:, Osmotic swelling elicits an outwardly rectifying Cl, conductance in CAD cells. The IClswell observed in these cells is similar to that observed in other cells, and is likely to provide a pathway for the loss of Cl, which leads to water loss and RVD. As ischaemia, brain trauma, hypoxia and other brain pathologies can cause cell swelling, CAD cells represent a model cell line for the study of neuronal cell volume regulation. [source] The role of taurine in diabetes and the development of diabetic complicationsDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2001Svend Høime Hansen Abstract The ubiquitously found ,-amino acid taurine has several physiological functions, e.g. in bile acid formation, as an osmolyte by cell volume regulation, in the heart, in the retina, in the formation of N -chlorotaurine by reaction with hypochlorous acid in leucocytes, and possibly for intracellular scavenging of carbonyl groups. Some animals, such as the cat and the C57BL/6 mouse, have disturbances in taurine homeostasis. The C57BL/6 mouse strain is widely used in diabetic and atherosclerotic animal models. In diabetes, the high extracellular levels of glucose disturb the cellular osmoregulation and sorbitol is formed intracellularly due to the intracellular polyol pathway, which is suspected to be one of the key processes in the development of diabetic late complications and associated cellular dysfunctions. Intracellular accumulation of sorbitol is most likely to cause depletion of other intracellular compounds including osmolytes such as myo -inositol and taurine. When considering the clinical complications in diabetes, several links can be established between altered taurine metabolism and the development of cellular dysfunctions in diabetes which cause the clinical complications observed in diabetes, e.g. retinopathy, neuropathy, nephropathy, cardiomyopathy, platelet aggregation, endothelial dysfunction and atherosclerosis. Possible therapeutic perspectives could be a supplementation with taurine and other osmolytes and low-molecular compounds, perhaps in a combinational therapy with aldose reductase inhibitors. Copyright © 2001 John Wiley & Sons, Ltd. [source] Intracellular Ca2+ responses and cell volume regulation upon cholinergic and purinergic stimulation in an immortalized salivary cell lineEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2010Marit H. Aure Aure MH, Røed A, Kanli Galtung H. Intracellular Ca2+responses and cell volume regulation upon cholinergic and purinergic stimulation in an immortalized salivary cell line. Eur J Oral Sci 2010; 118: 237,244. © 2010 The Authors. Journal compilation © 2010 Eur J Oral Sci The water channel aquaporin 5 (AQP5) seems to play a key role in salivary fluid secretion and appears to be critical in the cell volume regulation of acinar cells. Recently, the cation channel transient potential vanilloid receptor 4 (TRPV4) was shown to be functionally connected to AQP5 and also to cell volume regulation in salivary glands. We used the Simian virus 40 (SV40) immortalized cell line SMG C10 from the rat submandibular salivary gland to investigate the effect of ATP and the neurotransmitter analogue carbachol on Ca2+ signalling and cell volume regulation, as well as the involvement of TRPV4 in the responses. We used fura-2-AM imaging, cell volume measurements, and western blotting. Both carbachol and ATP increased the concentration of intracellular Ca2+, but no volume changes could be measured. Inhibition of TRPV4 with ruthenium red impaired both ATP- and carbachol-stimulated Ca2+ signals. Peak Ca2+ signalling during hyposmotic exposure was significantly decreased following inhibition of TRPV4, while the cells' ability to volume regulate appeared to be unaffected. These results show that in the SMG C10 cells, simulation of nervous stimulation did not induce cell swelling, although the cells had intact volume regulatory mechanisms. Furthermore, even though Ca2+ signals were not needed for this volume regulation, TRPV4 seems to play a role during ATP and carbachol stimulation. [source] Mrp2 modulates the activity of chloride channels in isolated hepatocytesHEPATOLOGY, Issue 1 2002Xinhua Li Adenosine triphosphate binding cassette family transport proteins are important organic ion transporters in hepatocytes but these molecules may also exhibit other functions. In the present study we have measured the effects of substrates of the canalicular organic ion transporter multidrug resistance associated protein 2 (Mrp2) on chloride channel activation and cell volume regulation. We found that substrates such as leukotriene D4, 17-,-estradiol glucuronide, and the leukotriene inhibitor MK-571 accelerated the activation of chloride channels by cell swelling and activated chloride channels in cytokine-pretreated hepatocytes. Two conjugated estrogens that are not Mrp2 substrates did not produce this effect. Hepatocytes derived from a strain of transport-deficient rats (TR,), which lack Mrp2 expression, showed none of these substrate effects. Coincident with their ability to activate channels, the Mrp2 substrates increased the rate of volume regulatory decrease by approximately 50% (P < .01), confirming that enhanced channel activation under this condition stimulated volume regulation. In TR-hepatocytes the Mrp2 substrate had no effect on volume regulation. In conclusion, Mrp2 plays a role in regulation of chloride channel function by reducing the lag time necessary for channel activation and consequently accelerating the process of cell volume regulation. Substrates of Mrp2 affect the ability of the protein to interact with chloride channels. These findings represent an alternative function of Mrp2 in hepatocytes. [source] Liver cell volume regulation: Size mattersHEPATOLOGY, Issue 6 2001Jeffrey C. Dunkelberg First page of article [source] Glial cell-derived glutamate mediates autocrine cell volume regulation in the retina: activation by VEGFJOURNAL OF NEUROCHEMISTRY, Issue 2 2008Antje Wurm Abstract Astroglial cells are a source for gliotransmitters such as glutamate and ATP. We demonstrate here that gliotransmitters have autocrine functions in the regulation of cellular volume. Hypoosmotic stress in the presence of inflammatory mediators or oxidative stress, and during blockade or down-regulation of potassium channels, induces swelling of retinal glial cells. Vascular endothelial growth factor inhibits the osmotic swelling of glial cells in retinal slices or isolated cells. This effect was mediated by a kinase domain region/flk-1 receptor-evoked calcium dependent release of glutamate from glial cells, and subsequent stimulation of glial group I/II metabotropic glutamate receptors. Activation of kinase domain region/flk-1 or glutamate receptors evoked an autocrine swelling-inhibitory purinergic signaling cascade that was calcium-independent. This cascade involved the release of ATP and adenosine, and the activation of purinergic P2Y1 and adenosine A1 receptors, resulting in the opening of potassium and chloride channels and inhibition of cellular swelling. The glutamatergic-purinergic regulation of the glial cell volume may be functionally important in the homeostasis of the extracellular space volume during intense neuronal activation which is associated with a swelling of neuronal cell structures in the retina. However, glial cell-derived glutamate may also contribute to the swelling of activated neurons since metabolic poisoning of glial cells by iodoacetate inhibits the neuronal cell swelling mediated by activation of ionotropic glutamate receptors. [source] Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl, channel geneTHE JOURNAL OF PHYSIOLOGY, Issue 1 2002Jorge Arreola Salivary gland acinar cells shrink when Cl, currents are activated following cell swelling induced by exposure to a hypotonic solution or in response to calcium-mobilizing agonists. The molecular identity of the Cl, channel(s) in salivary cells involved in these processes is unknown, although ClC-3 has been implicated in several tissues as a cell-volume-sensitive Cl, channel. We found that cells isolated from mice with targeted disruption of the Clcn3 gene undergo regulatory volume decrease in a fashion similar to cells from wild-type littermates. Consistent with a normal regulatory volume decrease response, the magnitude and the kinetics of the swell-activated Cl, currents in cells from ClC-3-deficient mice were equivalent to those from wild-type mice. It has also been suggested that ClC-3 is activated by Ca2+ -calmodulin-dependent protein kinase II; however, the magnitude of the Ca2+ -dependent Cl, current was unchanged in the Clcn3,/- animals. In addition, we observed that ClC-3 appeared to be highly expressed in the smooth muscle cells of glandular blood vessels, suggesting a potential role for this channel in saliva production by regulating blood flow, yet the volume and ionic compositions of in vivo stimulated saliva from wild-type and null mutant animals were comparable. Finally, in some cells ClC-3 is an intracellular channel that is thought to be involved in vesicular acidification and secretion. Nevertheless, the protein content of saliva was unchanged in Clcn3,/- mice. Our results demonstrate that the ClC-3 Cl, channel is not a major regulator of acinar cell volume, nor is it essential for determining the secretion rate and composition of saliva. [source] |