Cell Study (cell + study)

Distribution by Scientific Domains


Selected Abstracts


Development of microdevices for physioelectrical measurement of biological cells

ELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 1 2008
Takanori Akagi
Abstract Electrical characteristics of biological cells are important indices for obtaining information about the state and function of a cell. In this paper, we report the development of microdevices for physioelectrical measurement of cells by applying nano/microfabrication technologies. These devices enable the highly precise measurement of cell membrane potential and zeta potential of individual cells in a minimally invasive manner. Such a fusion of the microdevice technologies and biotechnologies is expected to provide power diagnostic tools for future cell study and cell therapy. © 2008 Wiley Periodicals, Inc. Electron Comm Jpn, 91(1): 40, 45, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.10027 [source]


Classification of fixed urological cells using Raman tweezers

JOURNAL OF BIOPHOTONICS, Issue 1-2 2009
Tim J. Harvey
Abstract In this paper we report on preliminary investigations into using Raman tweezers to classify urological cell lines. This builds on earlier work within the group, whereby Raman tweezer methodologies were developed, and the application of this technique to differentiate between live prostate cancer (CaP) and bladder cells lines (PC-3 and MGH-U1 respectively) was demonstrated. In this present study we analysed chemically fixed cells using two different fixative methods; SurePathTM (a commercial available liquid based cytology media) and 4% v/v formalin/PBS fixatives. The study has been expanded from our previous live cell study to include the androgen sensitive CaP cell line LNCaP, primary benign prostate hyperplasia (BPH) cells as well as primary urethral cells. Raman light from the cells was collected using a 514.5 nm Ar-ion laser excitation source in back-scattering configuration mode. Principal component-linear discriminate analysis (PC-LDA) models of resulting cell spectra were generated and these were validated using a blind comparison. Sensitivities and specificities of > 72% and 90% respectively, for SurePath fixed cells, and > 93% and 98% respectively for 4% v/v formalin/PBS fixed cells was achieved. The higher prediction results for the formalin fixed cells can be attributed to a better signal-to-noise ratio for spectra obtained from these cells. Following on from this work, urological cell lines were exposed to urine for up to 12 hours to determine the effect of urine on the ability to classify these cells. Results indicate that urine has no detrimental effect on prediction results. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Tumorigenic study on hepatocytes coexpressing SV40 with Ras

MOLECULAR CARCINOGENESIS, Issue 4 2006
Beicheng Sun
Abstract A model of neoplastic transformation by the combination of SV40 large T antigen (LT), SV40 small T antigen (ST), oncogenic Ras, and human telomerase reverse trasncriptase subunit (hTERT) has become established and replicated in primary human fibroblasts, however, there is no report on human hepatocytes. Here we use cell transplantation model, and show that transplantation of human hepatocytes of HL-7702 and HL-7703 expressing Ha-RasV12 and SV40 LT into subrenal capsule of immunodeficient mice results in fully malignant tumors, in contrast to conventional subcutaneous injections where tumors fail to develop. In GM-847 cell study, we have found that hTERT is not required for tumorigenic growth in subrenal capsule transplantation, however, it is required in subcutaneous injection assay. These results demonstrate that Human hepatocytes can be transformed under kidney capsule by coexpressing SV40 LT and Ha-RasV12, neither hTERT nor protein phosphatase 2A (PP2A) inhibition are required for malignant transformation, a gene which increases cell survival in the subcutaneous injection model is not required for tumorigenic growth in subrenal capsule. © 2005 Wiley-Liss, Inc. [source]


Regional specialization of the Ganglion cell density in the retina of the Ostrich (Struthio camelus)

ANIMAL SCIENCE JOURNAL, Issue 1 2010
Mohammad L. RAHMAN
ABSTRACT In this study, retinal whole-mount specimens were prepared and stained with 0.1% cresyl violet for the ganglion cell study in the Ostrich (Struthio camelus). The total number, distribution, and size of these cells were determined in different retinal regions. The mean total number of ganglion cells (three retinas) was 1 435 052 with an average density of 652 cells/mm2. The temporo , nasal area of the retina with high cell density were identified with the peak of 7525 cells/mm2 in the central area. The size of most ganglion cells ranged from 113,403 µm2, with smaller cells predominating along the temporo-nasal streak above the optic disc and larger cells comprising more of the peripheral regions. The average thickness of the retina was 196 µm. The central area was the thickest area (268.6 µm), whereas the peripheral area was the thinnest area. Thus, the specialization of ganglion cell densities, their sizes and the thickness of the retina support the notion that the conduction of visual information towards the brain from all regions of the retina is not uniform, and suggests that the temporo , nasal streak is the fine quality area for vision in ostriches. [source]