Cell Spectra (cell + spectrum)

Distribution by Scientific Domains


Selected Abstracts


Classification of fixed urological cells using Raman tweezers

JOURNAL OF BIOPHOTONICS, Issue 1-2 2009
Tim J. Harvey
Abstract In this paper we report on preliminary investigations into using Raman tweezers to classify urological cell lines. This builds on earlier work within the group, whereby Raman tweezer methodologies were developed, and the application of this technique to differentiate between live prostate cancer (CaP) and bladder cells lines (PC-3 and MGH-U1 respectively) was demonstrated. In this present study we analysed chemically fixed cells using two different fixative methods; SurePathTM (a commercial available liquid based cytology media) and 4% v/v formalin/PBS fixatives. The study has been expanded from our previous live cell study to include the androgen sensitive CaP cell line LNCaP, primary benign prostate hyperplasia (BPH) cells as well as primary urethral cells. Raman light from the cells was collected using a 514.5 nm Ar-ion laser excitation source in back-scattering configuration mode. Principal component-linear discriminate analysis (PC-LDA) models of resulting cell spectra were generated and these were validated using a blind comparison. Sensitivities and specificities of > 72% and 90% respectively, for SurePath fixed cells, and > 93% and 98% respectively for 4% v/v formalin/PBS fixed cells was achieved. The higher prediction results for the formalin fixed cells can be attributed to a better signal-to-noise ratio for spectra obtained from these cells. Following on from this work, urological cell lines were exposed to urine for up to 12 hours to determine the effect of urine on the ability to classify these cells. Results indicate that urine has no detrimental effect on prediction results. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Simultaneous Raman micro,spectroscopy of optically trapped and stacked cells

JOURNAL OF RAMAN SPECTROSCOPY, Issue 9 2007
P. R. T. Jess
Abstract The combination of Raman spectroscopy and optical trapping holds great promise for single-cell studies and is an emergent theme in microfluidic environments. Here, the evolution of the Raman signal intensity with an axial increment of the mass of the substance of interest inside a specific Raman excitation volume is investigated. Whilst Raman spectroscopy may be applied to tissue samples, solutions and single cells, there are no easily available methods to rapidly acquire signals from small cell populations. We show a simple but powerful method to record the Raman intensity signal simultaneously from a small number of trapped cells or colloidal particles using the technique of optical stacking. The Raman spectra of stacks of red blood cells and yeast cells show that this method can be applied to biological systems. We demonstrate how we may reveal biochemical fingerprints that would otherwise require long integration times for each single cell or averaging over many sequentially acquired cell spectra. There is potential to apply this method to directly attain Raman spectra from sorted sub-populations of normal, abnormal and tumour cell lines. Copyright © 2007 John Wiley & Sons, Ltd. [source]


HIGH-RESOLUTION MAGIC ANGLE SPINNING NMR ANALYSIS OF WHOLE CELLS OF CHAETOCEROS MUELLERI (BACILLARIOPHYCEAE) AND COMPARISON WITH 13C-NMR AND DISTORTIONLESS ENHANCEMENT BY POLARIZATION TRANSFER 13C-NMR ANALYSIS OF LIPOPHILIC EXTRACTS,

JOURNAL OF PHYCOLOGY, Issue 3 2004
Matilde S. Chauton
Lipid composition in extracted samples of Chaetoceros muelleri Lemmermann was studied with 13C-NMR and distortionless enhancement by polarization transfer (DEPT) 13C-NMR, resulting in well-resolved 13C-NMR spectra with characteristic resonance signals from carboxylic, olefinic, glyceryl, methylene, and methyl groups. The application of a DEPT pulse sequence aided in the assignment of methylene and methine groups. Resonance signals were compared with literature references, and signal assignment included important unsaturated fatty acids such as eicosapentaenoic and docosahexaenoic and also phospholipids and glycerols. Results from the extracted samples were used to assign resonance signals in a high-resolution magic angle spinning (HR MAS) DEPT 13C spectrum from whole cells of C. muelleri. The NMR analysis on whole cells yielded equally good information on fatty acids and also revealed signals from carbohydrates and amino acids. Broad resonance signals and peak overlapping can be a problem in whole cell analysis, but we found that application of HR MAS gave a well-resolved spectrum. The chemical shift of metabolites in an NMR spectrum depends on the actual environment of nuclei during analysis, and some differences could therefore be expected between extracted and whole cell samples. The shift differences were small, and assignment from analysis of lipophilic extract could be used to identify peaks in the whole cell spectrum. HR MAS 13C-NMR therefore offers a possibility for broad-range metabolic profiling directly on whole cells, simultaneously detecting metabolites that are otherwise not detected in the same analytical set up and avoiding tedious extraction procedures. [source]


Evidence for involvement of peptidoglycan in the triggering of an oxidative burst by Listeria monocytogenes in phagocytes

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2005
K. A. Remer
Summary We have shown previously that in listeric encephalitis of cattle and rats, nitrotyrosine was produced in microabscesses, implying that both superoxide anion (O2,) and nitric oxide (NO) are present and react with each other. Evidence of local synthesis of NO by macrophages was provided, but the source of O2, remained unknown. Here we have examined whether phagocytes exposed to viable and heat-killed Listeria monocytogenes (LM,) produce O2, and, if so, whether this results from direct interaction of phagocytes with the bacterial surface of L. monocytogenes or whether prior opsonization is required. Using lucigenin-enhanced chemiluminescence (LCL) for the measurement of O2,, we show that LM, induces an oxidative burst in human neutrophils, monocytes and monocyte-derived macrophages (M,). Viability is not required, and opsonization by antibodies and/or complement does not enhance the LCL signal. As Toll-like receptors (TLR) were shown recently to mediate an oxidative burst, TLR agonists representative for pathogen-associated molecular patterns (PAMPs) were tested for their ability to elicit an oxidative burst. These included lipoteichoic acid (LTA), bacterial peptidoglycan (PGN), recombinant flagellin, CpG-containing DNA and double-stranded RNA. Only PGN and flagellin consistently elicited an LCL signal resembling that induced by LM, with regard to the kinetics and cell spectrum stimulated. However, flagellin was unlikely to be responsible for the LM,-mediated burst, as a flagellin-deficient mutant showed no decrease in LCL. We therefore assume that in LM,, core PGN acts as a PAMP and directly induces an oxidative burst in all phagocyte populations. We conclude that in cerebral lesions superoxide anion is generated locally by phagocytes recognizing bacterial PGN. [source]


Offer and demand: proliferation and survival of neurons in the dentate gyrus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005
Konrad Lehmann
Abstract The proliferation and survival of new cells in the dentate gyrus of mammals is a complex process that is subject to numerous influences, presenting a confusing picture. We suggest regarding these processes on the level of small networks, which can be simulated in silico and which illustrate in a nutshell the influences that proliferating cells exert on plasticity and the conditions they require for survival. Beyond the insights gained by this consideration, we review the available literature on factors that regulate cell proliferation and neurogenesis in the dentate gyrus in vivo. It turns out that the rate of cell proliferation and excitatory afferents via the perforant path interactively determine cell survival, such that the best network stability is achieved when either of the two is increased whereas concurrent activation of the two factors lowers cell survival rates. Consequently, the mitotic activity is regulated by systemic parameters in compliance with the hippocampal network's requirements. The resulting neurogenesis, in contrast, depends on local factors, i.e. the activity flow within the network. In the process of cell differentiation and survival, each cell's spectrum of afferent and efferent connections decides whether it will integrate into the network or undergo apoptosis, and it is the current neuronal activity which determines the synaptic spectrum. We believe that this framework will help explain the biology of dentate cell proliferation and provide a basis for future research hypotheses. [source]