Cell Shape (cell + shape)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Directional change produced by perpendicularly-oriented microgrooves is microtubule-dependent for fibroblasts and epithelium

CYTOSKELETON, Issue 5 2009
Douglas W. Hamilton
Abstract Anisotropic substrata such as micromachined grooves can control cell shape, orientation, and the direction of cell movement, a phenomena termed topographic guidance. Although many types of cells exhibit topographic guidance, little is known regarding cell responses to conflicting topographic cues. We employed a substratum with intersecting grooves in order to present fibroblasts and epithelial cells with conflicting topographic cues. Using time-lapse and confocal microscopy, we examined cell behavior at groove intersections. Migrating fibroblasts and epithelial cells typically extended a cell process into the intersection ahead of the cell body. After travelling along the "X" groove to enter the intersection, the leading lamellipodia of the cell body encountered the perpendicular "Y" groove, and spread latterly along the "Y" groove. The formation of lateral lamellipodia resulted in cells forming "T" or "L" morphologies, which were characterized by the formation of phosphotyrosine-rich focal adhesions at the leading edges. The "Y" groove did not prove an absolute barrier to cell migration, particularly for epithelial cells. Analysis of cytoskeletal distribution revealed that F-actin bundles did not adapt closely to the groove patterns, but typically did align to either the "X" or "Y" grooves. In contrast microtubules (MT) adapted closely to the walls. Inhibition of microtubule nucleation attenuated fibroblast and epithelial cell orientation within the intersection of the perpendicular grooves. We conclude that MT may be the prime determinant of fibroblast and epithelial cell conformation to conflicting topographies. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Compaction of cell shape occurs before decrease of elasticity in CHO-K1 cells treated with actin cytoskeleton disrupting drug cytochalasin D

CYTOSKELETON, Issue 4 2009
Christian Schulze
Abstract The actin filaments of the cytoskeleton form a highly dynamic polymer scaffold which is actively involved in many essential mechanisms such as cell migration, transport, mitosis, and mechanosensitivity. We treated CHO-K1 cells with different concentrations of the actin cytoskeleton disrupting drug cytochalasin D. Then investigating the cells' elastic behaviour by scanning force microscopy-based rheology we confirmed for high cytochalasin D concentrations (,1.5 ,M) a significant decrease of mechanical stability. At lower concentrations we measured no significant softening, but flattening and a horizontal contraction was observable even at low concentrations (,0.3 ,M) of cytochalasin D. The observed changes in cell shape resulted in a lower cell volume, showing that there is compensation by volume for small decreases in cytoskeletal strength resulting from reduced numbers or lengths of actin filaments. These results suggest that the characteristic functions defining a cell's mechanical stability such as mechanosensitivity can be maintained via small changes in cell volume in order to counter fluctuations in cytoskeletal composition. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Inflammatory cytokines augments TGF-,1-induced epithelial-mesenchymal transition in A549 cells by up-regulating T,R-I

CYTOSKELETON, Issue 12 2008
Xiangde Liu
Abstract Epithelial-mesenchymal transition (EMT) is believed to play an important role in fibrosis and tumor invasion. EMT can be induced in vitro cell culture by various stimuli including growth factors and matrix metalloproteinases. In this study, we report that cytomix (a mixture of IL-1,, TNF-, and IFN-,) significantly enhances TGF-,1-induced EMT in A549 cells as evidenced by acquisition of fibroblast-like cell shape, loss of E-cadherin, and reorganization of F-actin. IL-1, or TNF-, alone can also augment TGF-,1-induced EMT. However, a combination of IL-1, and TNF-, or the cytomix is more potent to induce EMT. Cytomix, but not individual cytokine of IL-1,, TNF-, or IFN-,, significantly up-regulates expression of TGF-, receptor type I (T,R-I). Suppression of T,R-I, Smad2 or Smad3 by siRNA partially blocks EMT induction by cytomix plus TGF-,1, indicating cytomix augments TGF-,1-induced EMT through enhancing T,R-I and Smad signaling. These results indicate that inflammatory cytokines together with TGF-,1 may play an important role in the development of fibrosis and tumor progress via the mechanism of epithelial-mesenchymal transition. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source]


Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography

CYTOSKELETON, Issue 2 2008
W. A. Loesberg
Abstract This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 ,m, width: 1 ,m), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more dominant to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell alignment. Expression of collagen type I, and ,1-, ,1-, ,3-integrin were investigated by QPCR. Finally, immunoblotting was applied to visualise MAPK signalling pathways. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata, cells had spread out in a random fashion. The alignment of cells cultured on grooved surfaces under simulated microgravity, after 48 h of culturing appeared similar to those cultured at 1g, although cell shape was different. Analysis of variance proved that all main parameters: topography, gravity force, and time were significant. In addition, gene levels were reduced by simulated microgravity particularly those of ,3-integrin and collagen, however alpha-1 and beta-1 integrin levels were up-regulated. ERK1/2 was reduced in RPM, however, JNK/SAPK and p38 remained active. The members of the small GTPases family were stimulated under microgravity, particularly RhoA and Cdc42. The results are in agreement that application of microgravity to fibroblasts promotes a change in their morphological appearance and their expression of cell-substratum proteins through the MAPK intracellular signalling pathways. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


Cell distribution of stress fibres in response to the geometry of the adhesive environment

CYTOSKELETON, Issue 6 2006
Manuel Théry
Abstract Cells display a large variety of shapes when plated in classical culture conditions despite their belonging to a common cell type. These shapes are transitory, since cells permanently disassemble and reassemble their cytoskeleton while moving. Adhesive micropatterns are commonly used to confine cell shape within a given geometry. In addition the micropattern can be designed so as to impose cells to spread upon adhesive and nonadhesive areas. Modulation of the pattern geometry allows the analysis of the mechanisms governing the determination of cell shape in response to external adhesive conditions. In this study, we show that the acquisition of cell shape follows two stages where initially the cell forms contact with the micropattern. Here, the most distal contacts made by the cell with the micropattern define the apices of the cell shape. Then secondly, the cell borders that link two apices move so as to minimise the distance between the two apices. In these cell borders, the absence of an underlying adhesive substrate is overcome by stress fibres forming between the apices, which in turn are marked by an accumulation of focal adhesions. By inhibiting myosin function, cell borders on nonadhesive zones become more concave, suggesting that the stress fibres work against the membrane tension in the cell border. Moreover, this suggested that traction forces are unevenly distributed in stationary, nonmigrating, cells. By comparing the stress fibres in cells with one, two, or three nonadherent cell borders it was reasoned that stress fibre strength is inversely proportional to number. We conclude that cells of a given area can generate the same total sum of tractional forces but that these tractional forces are differently spaced depending on the spatial distribution of its adherence contacts. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


Simultaneous quantification of cell motility and protein-membrane-association using active contours

CYTOSKELETON, Issue 4 2002
Dirk Dormann
Abstract We present a new method for the quantification of dynamic changes in fluorescence intensities at the cell membrane of moving cells. It is based on an active contour method for cell-edge detection, which allows tracking of changes in cell shape and position. Fluorescence intensities at specific cortical subregions can be followed in space and time and correlated with cell motility. The translocation of two GFP tagged proteins (CRAC and GRP1) from the cytosol to the membrane in response to stimulation with the chemoattractant cAMP during chemotaxis of Dictyostelium cells and studies of the spatio-temporal dynamics of this process exemplify the method: We show that the translocation can be correlated with motility parameters and that quantitative differences in the rate of association and dissociation from the membrane can be observed for the two PH domain containing proteins. The analysis of periodic CRAC translocation to the leading edge of a cell responding to natural cAMP waves in a mound demonstrates the power of this approach. It is not only capable of tracking the outline of cells within aggregates in front of a noisy background, but furthermore allows the construction of spatio-temporal polar plots, capturing the dynamics of the protein distribution at the cell membrane within the cells' moving co-ordinate system. Compilation of data by means of normalised polar plots is suggested as a future tool, which promises the so-far impossible practicability of extensive statistical studies and automated comparison of complex spatio-temporal protein distribution patterns. Cell Motil. Cytoskeleton 52:221,230, 2002. © 2002 Wiley-Liss, Inc. [source]


Cell type,specific expression of adenomatous polyposis coli in lung development, injury, and repair

DEVELOPMENTAL DYNAMICS, Issue 8 2010
Aimin Li
Abstract Adenomatous polyposis coli (Apc) is critical for Wnt signaling and cell migration. The current study examined Apc expression during lung development, injury, and repair. Apc was first detectable in smooth muscle layers in early lung morphogenesis, and was highly expressed in ciliated and neuroendocrine cells in the advanced stages. No Apc immunoreactivity was detected in Clara or basal cells, which function as stem/progenitor cell in adult lung. In ciliated cells, Apc is associated mainly with apical cytoplasmic domain. In response to naphthalene-induced injury, Apcpositive cells underwent squamous metaplasia, accompanied by changes in Apc subcellular distribution. In conclusion, both spatial and temporal expression of Apc is dynamically regulated during lung development and injury repair. Differential expression of Apc in progenitor vs. nonprogenitor cells suggests a functional role in cell-type specification. Subcellular localization changes of Apc in response to naphthalene injury suggest a role in cell shape and cell migration. Developmental Dynamics 239:2288,2297, 2010. © 2010 Wiley-Liss, Inc. [source]


What drives cell morphogenesis: A look inside the vertebrate photoreceptor

DEVELOPMENTAL DYNAMICS, Issue 9 2009
Breandán Kennedy
Abstract Vision mediating photoreceptor cells are specialized light-sensitive neurons in the outer layer of the vertebrate retina. The human retina contains approximately 130 million of such photoreceptors, which enable images of the external environment to be captured at high resolution and high sensitivity. Rod and cone photoreceptor subtypes are further specialized for sensing light in low and high illumination, respectively. To enable visual function, these photoreceptors have developed elaborate morphological domains for the detection of light (outer segments), for changing cell shape (inner segments), and for communication with neighboring retinal neurons (synaptic terminals). Furthermore, rod and cone subtypes feature unique morphological variations of these specialized characteristics. Here, we review the major aspects of vertebrate photoreceptor morphology and key genetic mechanisms that drive their formation. These mechanisms are necessary for cell differentiation as well as function. Their defects lead to cell death. Developmental Dynamics 238:2115,2138, 2009. © 2009 Wiley-Liss, Inc. [source]


Chick limbs with mouse teeth: An effective in vivo culture system for tooth germ development and analysis

DEVELOPMENTAL DYNAMICS, Issue 1 2003
Eiki Koyama
Abstract Mouse tooth germ development is currently studied by three main approaches: in wild-type and mutant mouse lines, after transplantation of tooth germs to ectopic sites, and in organ culture. The in vivo approaches are the most physiological but do not provide accessibility to tooth germs for further experimental manipulation. Organ cultures, although readily accessible, do not sustain full tooth germ development and are appropriate for short-term analysis. Thus, we sought to establish a new approach that would combine experimental accessibility with sustained development. We implanted fragments of embryonic day 12 mouse embryo first branchial arch containing early bud stage tooth germs into the lateral mesenchyme of day 4,5 chick embryo wing buds in ovo. Eggs were reincubated, and implanted tissues were examined by histochemistry and in situ hybridization over time. The tooth germs underwent seemingly normal growth, differentiation, and morphogenesis. They reached the cap, bell, and crown stages in approximately 3, 6, and 10 days, respectively, mimicking in a striking manner native temporal patterns. To examine mechanisms regulating tooth germ development, we first implanted tooth germ fragments, microinjected them with neutralizing antibodies to the key signaling molecule Sonic hedgehog (Shh), and examined them over time. Tooth germ development was markedly delayed, as revealed by poor morphogenesis and lack of mature ameloblasts and odontoblasts displaying characteristic traits such as an elongated cell shape, nuclear relocalization, and amelogenin gene expression. These phenotypic changes began to be reversed upon further incubation. The data show that the limb bud represents an effective, experimentally accessible as well as economical system for growth and analysis of developing tooth germs. The inhibitory effects of Shh neutralizing antibody treatment are discussed in relation to roles of this signaling pathway proposed by this and other groups previously. © 2002 Wiley-Liss, Inc. [source]


Pancreatic mucinous lesions: A retrospective analysis with cytohistological correlation

DIAGNOSTIC CYTOPATHOLOGY, Issue 11 2006
Jing Zhai M.D., Ph.D.
Abstract The diagnosis of mucinous pancreatic lesions, which include mucinous noncystic adenocarcinoma, intraductal papillary mucinous neoplasm (IPMN), mucinous cystic neoplasm (MCN), and mucinous metaplasia, is critical, given different clinical management and prognosis. This retrospective study is done to assess the cytological features and pitfalls associated with these entities in cytological samples. A search for pancreatic cytology specimens with histological confirmation of the various pancreatic mucinous lesions was done from 1988 to 2005: 9 mucinous adenocarcinoma, 14 IPMN, 11 MCN, and 3 mucinous metaplasia. The majority (35/37) had been endoscopic ultrasound-guided fine-needle aspirations. The cellularity, background extracellular mucin, epithelial architecture, mucinous nature of the epithelium, cell shape, and nuclear features were evaluated on the cytology material. Of the 22 cytological features evaluated, the presence of three-dimensional clusters, micropapillary structures, and nuclear atypia, which includes nuclear crowding, increased N/C ratio, anisonucleosis, nuclear membrane contour irregularity, clumpy chromatin, and prominent nucleoli, was found to be consistently associated with mucinous adenocarcinoma. There were no statistically significant cytological features, which helped in differentiating IPMN, MCN, and mucinous metaplasia. There was a relatively high false-positive rate in the IPMN group (5/14, 36%). Review of the histological specimen showed severe dysplastic epithelial change in these cases. One false-positive case of mucinous metaplasia (1/3, 33%) showed marked intraepithelial acute inflammation. The cytological diagnosis of mucinous pancreatic lesions remains challenging, except for mucinous noncystic adenocarcinoma. The findings were largely nonspecific in the differentiation between IPMN, MCN, mucinous metaplasia, and incidentally sampled gastrointestinal epithelium. False-positive diagnosis of adenocarcinoma occurs not infrequently in the setting of IPMN with severe dysplastic epithelial change and in lesions with associated acute inflammation, and can be a pitfall in the diagnosis of these lesions. Diagn. Cytopathol. 2006;34: 724,730. © 2006 Wiley-Liss, Inc. [source]


Seed morphology of some species of Convolvulaceae from Egypt (Identification of species and systematic significance)

FEDDES REPERTORIUM, Issue 1-2 2007
K. Abdel Khalik
Seed morphology of 31 taxa belong to six genera of Convolvulaceae from Egypt were examined by using light and scanning electron microscopy. Macro- and micromorphological characters, including seed shape, colour, size, surface, epidermal cell shape, anticlinal boundaries, outer periclinal cell wall and relief of outer cell walls, are presented. Three types of basic anticlinal cell wall boundaries and three types of relief outer cell walls are recognized and four different shapes of the outer periclinal cell wall are described. A key for the identification of the investigated taxa based on seed characters is provided. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Morphologie der Samen einiger Arten der Convolvulaceae aus Ägypten (Bestimmung von Arten und systematische Bedeutung) Unter Anwendung von Licht- und Elektronenmikroskopie wurde die Morphologie der Samen von 31 Arten aus sechs Gattungen der Convolvulaceae untersucht. Berücksichtigt wurden die makro- und mikromorphologischen Merkmale der Samen umfassend äußere Form, Farbe, Größe, Oberfläche, Form der Epidermiszellen, antiklinale und periklinale Zellwände und Relief der äußeren Zellwände. Drei Typen basaler antiklinaler Zellwände und drei Typen des Reliefs der äußeren Zellwände wurden nachgewiesen; ferner werden vier Formen der äußeren periklinalen Zellwände beschrieben. Ein Schlüssel zur Bestimmung der untersuchten Taxa auf der Basis der Merkmale der Samen wird vorgelegt. [source]


Seed morphology of Cuscuta L. (Convolvulaceae) in Egypt and its systematic significance

FEDDES REPERTORIUM, Issue 3-4 2006
K. N. Abdel Khalik
The seed morphology of eight taxa of Cuscuta from Egypt has been studied using light and scanning electron microscopy, to determine the significance of seed coat features as taxonomic characters. Macro- and micromorphological characters, including seed shape, colour, size, epidermal cell shape, anticlinal boundaries, outer periclinal cell wall and relief of outer cell walls are presented. Three types of anticlinal cell wall boundaries are recognized and two different shapes of outer periclinal cell wall are described. The secondary sculpture of the cell wall varies from striate to micro-reticulate, and smooth to fine folds. A key for the identification of the investigated taxa based on seed characters is provided. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Samenmorphologie von Cuscuta L. (Convolvulaceae) in Ägypten und ihre systematische Bedeutung Die Morphologie des Samens von acht ägyptischen Cuscuta -Taxa wurde mittels Licht- und Elektronenmikroskopie untersucht, um die Bedeutung der Merkmale der Samenschale für die Taxonomie zu ermitteln. Makro- und mikromorphologische Merkmale einschließlich Samengestalt, Farbe, Größe, Form der Epidermiszellen, antiklinale Zellwände, äußere Periklinal-Zellwände und Relief der äußeren Zellwände umfassend, wurden untersucht. Drei Typen antiklinaler Zellwand-Umrisse und zwei unterschiedliche Formen der äußeren Periklinal-Zellwände werden beschrieben. Die sekundäre Skulptur der Zellwände variiert von striat bis mikro-reticulat, und von glatt zu leicht gefaltet. Ein Bestimmungsschlüssel basierend auf den Samenmerkmalen der untersuchten Sippen wird vorgelegt. [source]


Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
Hanwei Gao
Abstract Surface plasmons are responsible for a variety of phenomena, including nanoscale optical focusing, negative refraction, and surface-enhanced Raman scattering. Their characteristic evanescent electromagnetic fields offer opportunities for sub-diffraction imaging, optical cloaking, and label-free molecular sensing. The selection of materials for such applications, however, has been traditionally limited to the noble metals Au and Ag because there has been no side-by-side comparison of other materials. This feature article describes recent progress on manipulating surface plasmons from ultraviolet to near-infrared wavelengths using plasmonic crystals made from 2D nanopyramidal arrays. A library of plasmon resonances is constructed in the form of dispersion diagrams for a series of unconventional and new composite plasmonic materials. These resonances are tuned by controlling both intrinsic factors (unit cell shape, materials type) and extrinsic factors (excitation conditions, dielectric environment). Finally, plasmonic crystals with reduced lattice symmetries are fabricated as another means to tailor resonances for broadband coupling. [source]


Capillary Force Lithography: A Versatile Tool for Structured Biomaterials Interface Towards Cell and Tissue Engineering,

ADVANCED FUNCTIONAL MATERIALS, Issue 17 2009
Kahp-Yang Suh
Abstract This Feature Article aims to provide an in-depth overview of the recently developed molding technologies termed capillary force lithography (CFL) that can be used to control the cellular microenvironment towards cell and tissue engineering. Patterned polymer films provide a fertile ground for controlling various aspects of the cellular microenvironment such as cell,substrate and cell,cell interactions at the micro- and nanoscale. Patterning thin polymer films by molding typically involves several physical forces such as capillary, hydrostatic, and dispersion forces. If these forces are precisely controlled, the polymer films can be molded into the features of a polymeric mold with high pattern fidelity and physical integrity. The patterns can be made either with the substrate surface clearly exposed or unexposed depending on the pattern size and material properties used in the patterning. The former (exposed substrate) can be used to adhere proteins or cells on pre-defined locations of a substrate or within a microfluidic channel using an adhesion-repelling polymer such as poly(ethylene glycol) (PEG)-based polymer and hyaluronic acid (HA). Also, the patterns can be used to co-culture different cells types with molding-assisted layer-by-layer deposition. In comparison, the latter (unexposed substrate) can be used to control the biophysical surrounding of a cell with tailored mechanical properties of the material. The surface micropatterns can be used to engineer cellular and multi-cellular architecture, resulting in changes of the cell shape and the cytoskeletal structures. Also, the nanoscale patterns can be used to affect various aspects of the cellular behavior, such as adhesion, proliferation, migration, and differentiation. [source]


Movement of yeast 1,3-,-glucan synthase is essential for uniform cell wall synthesis

GENES TO CELLS, Issue 1 2002
Takahiko Utsugi
Background:, The cell wall has an important role in maintaining cell shape. In the budding yeast Saccharomyces cerevisiae, the major filamentous component of the cell wall responsible for its rigidity is 1,3-,-glucan and is synthesized by 1,3-,-glucan synthase (GS), localized on the plasma membrane. Results:, Observations of green fluorescent protein (GFP)-conjugated Fks1p, a catalytic subunit of GS, revealed that it is co-localized with cortical actin patches and moves on the cell surface at the sites of cell wall remodelling. Mutants with impaired actin patch movement show immobility of Fks1p-GFP spots, indicating that actin patch motility is required for the movement of Fks1p. Cells with immobilized Fks1p exhibit defective cell wall structure and function. The cell wall thickness of the mutants becomes irregular, eventually leading to cell lysis. Conclusion:, We propose that GS movement is necessary for proper cell wall remodelling. [source]


Dual fluorescent protein reporters for studying cell behaviors in vivo

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 10 2009
M. David Stewart
Abstract Fluorescent proteins (FPs) are useful tools for visualizing live cells and their behaviors. Protein domains that mediate subcellular localization have been fused to FPs to highlight cellular structures. FPs fused with histone H2B incorporate into chromatin allowing visualization of nuclear events. FPs fused to a glycosylphosphatidylinositol anchor signal sequence label the plasma membrane, highlighting cellular shape. Thus, a reporter gene containing both types of FP fusions would allow for effective monitoring of cell shape, movement, mitotic stage, apoptosis, and other cellular activities. Here, we report a binary color-coding system using four differently colored FP reporters that generates 16 distinct color codes to label the nuclei and plasma membranes of live cells in culture and in transgenic mice. As an initial test of this system in vivo, the promoter of the human Ubiquitin C (UBC) gene was used to widely express one of the color-code reporters. Widespread expression of the reporter was attained in embryos; however, both male and female transgenic mice were infertile. In contrast, the promoter of the mouse Oct4/Pou5f1 gene linked to two different color-code reporters specifically labeled blastocysts, primordial germ cells, and postnatal germ cells, and these mice were fertile. Time-lapse movies of fluorescently-labeled primordial germs cells demonstrate the utility of the color-code system to visualize cell behaviors. This set of new FP reporters should be a useful tool for labeling distinct cell populations and studying their behaviors in complex tissues in vivo. genesis 47:708,717, 2009. © 2009 Wiley-Liss, Inc. [source]


A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2009
Xuan Chi
3-D images showing the outlines of individual cells in the ureteric bud tips of a Hoxb7/myr-Venus transgenic mouse kidney at embryonic day 15.5. Image stacks were acquired with a Bio-Rad laser scanning confocal microscope equipped with an Olympus U PlanApo/IR water lens 60x /NA1.2. The images were processed using blind deconvolution (AutoDeblur, Media Cybernetics, Bethesda, MD), followed by volume rendering (Volocity software). See the article by Chi et al. in this issue. [source]


Guided Cell Migration on Microtextured Substrates with Variable Local Density and Anisotropy

ADVANCED FUNCTIONAL MATERIALS, Issue 10 2009
Deok-Ho Kim
Abstract This work reports the design of and experimentation with a topographically patterned cell culture substrate of variable local density and anisotropy as a facile and efficient platform to guide the organization and migration of cells in spatially desirable patterns. Using UV-assisted capillary force lithography, an optically transparent microstructured layer of a UV curable poly(urethane acrylate) resin is fabricated and employed as a cell-culture substrate after coating with fibronectin. With variable local pattern density and anisotropy present in a single cell-culture substrate, the differential polarization of cell morphology and movement in a single experiment is quantitatively characterized. It is found that cell shape and velocity are exquisitely sensitive to variation in the local anisotropy of the two-dimensional rectangular lattice arrays, with cell elongation and speed decreasing on symmetric lattice patterns. It is also found that cells could integrate orthogonal spatial cues when determining the direction of cell orientation and movement. Furthermore, cells preferentially migrate toward the topographically denser areas from sparser ones. Consistent with these results, it is demonstrated that systematic variation of local densities of rectangular lattice arrays enable a planar assembly of cells into a specified location. It is envisioned that lithographically defined substrates of variable local density and anisotropy not only provide a new route to tailoring the cell-material interface but could serve as a template for advanced tissue engineering. [source]


,IV tubulin is selectively expressed by oligodendrocytes in the central nervous system

GLIA, Issue 3 2005
Nobuo Terada
Abstract Oligodendrocyte differentiation and myelination involve dramatic changes in cell signaling pathways, gene expression patterns, cell shape, and cytoskeletal organization. In a pilot study investigating CNS angiogenesis, oligodendrocytes were intensely labeled by antisera directed against the C-terminal of Tie-2, a 140-kDa transmembrane receptor for angiopoietin. Immunoprecipitation of rat brain proteins with Tie-2 C-terminal antisera, however, produced a single spot of ,55-kDa pI ,5 by two-dimensional (2D) electrophoresis, which was identified as ,-tubulin by mass spectrometry. Isotype-specific antibodies for ,IV tubulin selectively labeled oligodendrocytes. First detected in premyelinating oligodendrocytes, ,IV tubulin was abundant in myelinating oligodendrocyte perinuclear cytoplasm and processes extending to and along developing myelin internodes. ,IV tubulin-positive MTs were diffusely distributed in oligodendrocyte perinuclear cytoplasm and not organized around the centrosome. ,IV tubulin may play a role in establishing the oligodendrocyte MT network, which is essential for the transport of myelin proteins, lipids, and RNA during myelination. © 2005 Wiley-Liss, Inc. [source]


Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 1 2009
Emma J. Blain
Summary The cytoskeleton of all cells is a three-dimensional network comprising actin microfilaments, tubulin microtubules and intermediate filaments. Studies in many cell types have indicated roles for these cytoskeletal proteins in many diverse cellular processes including alteration of cell shape, movement of organelles, migration, endocytosis, secretion, cell division and extracellular matrix assembly. The cytoskeletal networks are highly organized in structure enabling them to fulfil their biological functions. This review will primarily focus on the organization and function of the three major cytoskeletal networks in articular cartilage chondrocytes. Articular cartilage is a major load-bearing tissue of the synovial joint; it is well known that the cytoskeleton acts as a physical interface between the chondrocytes and the extracellular matrix in ,sensing' mechanical stimuli. The effect of mechanical load on cytoskeletal element expression and organization will also be reviewed. Abnormal mechanical load is widely believed to be a risk factor for the development of osteoarthritis. Several studies have intimated that the major cytoskeletal networks are disorganized or often absent in osteoarthritic cartilage chondrocytes. The implications and possible reasoning for this are more widely discussed and placed into context with their potential relevance to disease and therapeutic strategies. [source]


Larval development in the Homoscleromorpha (Porifera, Demospongiae)

INVERTEBRATE BIOLOGY, Issue 3 2003
Nicole Boury-Esnault
Abstract. Embryonic development from coeloblastula to fully developed larva was investigated in 8 Mediterranean homoscleromorph species: Oscarella lobularis, O. tuberculata, O. microlobata, O. imperialis, Plakina trilopha, P. jani, Corticium candelabrum, and Pseudocorticium jarrei. Morphogenesis of the larva is similar in all these species; however, cell proliferation is more active in species of Oscarella than in Plakina and C. candelabrum. The result of cell division is a wrinkled, flagellated larva, called a cinctoblastula. It is composed of a columnar epithelium of polarized, monoflagellated cells among which are scattered a few non-flagellated ovoid cells. The central cavity always contains symbiotic bacteria. Maternal cells are also present in O. lobularis, O. imperialis, and P. jarrei. In the fully developed larva, cell shape and dimensions are constant for each species. The cells of the anterior pole have large vacuoles with heterogeneous material; those of the postero-lateral zone have an intranuclear paracrystalline inclusion; and the flagellated cells of the posterior pole have large osmiophilic inclusions. Intercellular junctions join the apical parts of the cells, beneath which are other specialized cell junctions. A basement membrane underlying the flagellated cells lines the larval cavity. This is the first observation of a basement membrane in a poriferan larva. The basal apparatus of flagellated cells is characterized by an accessory centriole located exactly beneath the basal body. The single basal rootlet is cross striated. The presence of a basement membrane and a true epithelium in the larva of Homoscleromorpha,unique among poriferan clades and shared with Eumetazoa,suggests that Demospongiae could be paraphyletic. [source]


UV-embossed microchannel in biocompatible polymeric film: Application to control of cell shape and orientation of muscle cells

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2006
Jin-Ye Shen
Abstract This article shows that ultra violet (UV) micro-embossing can be successfully used for fabricating biocompatible micropatterned films with microchannels separated by high aspect ratio microwalls. Eight series of micropatterns were investigated; the width of the microwall was either 10 or 25 ,m and that of the microchannel either 40, 80, 120, or 160 ,m. The material investigated was principally polyurethane diacrylate. The UV-embossed micropattern was extracted with methanol, converting the micropatterns from cytotoxic to biocompatible. The typical UV embossing method was modified by using a marginally adhesive polyester substrate, which facilitates demolding but is removable before methanol extraction to avoid fragmentation of the embossed micropatterns. The effect of the micropatterns on A7r5 smooth muscle cells and C2C12 skeletal muscle cells was investigated. The dimensions of both channel and wall have significant effects on the elongation of both muscle cells. In the narrower 40-,m channel, the C2C12 cells merged together to form myofibers. These results indicate that UV-embossed micropatterns may present a useful scaffold for in vitro cell shape and orientation control needed in vascular and muscle tissue engineering. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


Cloning and Functional Analysis of a Family of Nuclear Matrix Transcription Factors (NP/NMP4) that Regulate Type I Collagen Expression in Osteoblasts

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2001
Pasutha Thunyakitpisal
Abstract Collagen expression is coupled to cell structure in connective tissue. We propose that nuclear matrix architectural transcription factors link cell shape with collagen promoter geometry and activity. We previously indicated that nuclear matrix proteins (NP/NMP4) interact with the rat type I collagen ,1(I) polypeptide chain (COL1A1) promoter at two poly(dT) sequences (sites A and B) and bend the DNA. Here, our objective was to determine whether NP/NMP4- COL1A1 binding influences promoter activity and to clone NP/NMP4. Promoter-reporter constructs containing 3.5 kilobases (kb) of COL1A1 5, flanking sequence were fused to a reporter gene. Mutation of site A or site B increased promoter activity in rat UMR-106 osteoblast-like cells. Several full-length complementary DNAs (cDNAs) were isolated from an expression library using site B as a probe. These clones expressed proteins with molecular weights and COL1A1 binding activity similar to NP/NMP4. Antibodies to these proteins disrupted native NP/NMP4- COL1A1 binding activity. Overexpression of specific clones in UMR-106 cells repressed COL1A1 promoter activity. The isolated cDNAs encode isoforms of Cys2His2 zinc finger proteins that contain an AT-hook, a motif found in architectural transcription factors. Some of these isoforms recently have been identified as Cas-interacting zinc finger proteins (CIZ) that localize to fibroblast focal adhesions and enhance metalloproteinase gene expression. We observed NP/NMP4/CIZ expression in osteocytes, osteoblasts, and chondrocytes in rat bone. We conclude that NP/NMP4/CIZ is a novel family of nuclear matrix transcription factors that may be part of a general mechanical pathway that couples cell structure and function during extracellular matrix remodeling. [source]


If pemphigus vulgaris IgG are the cause of acantholysis, new IgG-independent mechanisms are the concause

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007
Nicola Cirillo
Pemphigus vulgaris (PV) is a disease of epidermal adhesion. Its pathogenesis is currently traced back to the action of autoantibodies against antigens located within the intercellular substance of keratinocytes, such as desmogleins and acetylcholine receptors. In the present paper, we sought to elucidate the non-IgG-mediated effects of PV sera on keratinocytes. Results showed that PV sera depleted of IgG were able to induce well-defined changes on keratinocyte morphology and metabolic activity. Indeed, PV IgG-free sera determined marked alterations on cell shape, accompanied by partial loss of keratinocyte,keratinocyte interactions within 48 h after treatment. Furthermore, PV IgG-depleted sera caused a sharp reduction of cell viability along with a less sustained weakening of intercellular adhesion strength. In light of the above findings, loss of cell,cell adhesion in PV occurs as a result of the cooperating action of both IgG and non-IgG-mediated mechanisms. These data have remarkable consequences on experimental models of PV and might open new "biological" approaches to its therapy. Thus, researchers are well advised that PV pathophysiology cannot be faithfully reproduced by leaving non-IgG serum factors out of consideration. J. Cell. Physiol. 212:563,567, 2007. © 2007 Wiley-Liss, Inc. [source]


Impairment of cytoskeleton-dependent vesicle and organelle translocation in green algae: combined use of a microfocused infrared laser as microbeam and optical tweezers

JOURNAL OF MICROSCOPY, Issue 2 2002
A. Holzinger
Summary A Nd-YAG laser at 1064 nm is used as optical tweezers to move intracellular objects and a laser microbeam to cause impairment of cytoskeleton tracks and influence intracellular motions in desmidiaceaen green algae. Naturally occurring migrations of large nuclei are inhibited in Micrasterias denticulata and Pleurenterium tumidum when the responsible microtubules are targeted with a laser microbeam generating 180 mW power in the focal plane. Impairment of the microtubule tracks appears to be irreversible, as the nucleus cannot pass the former irradiated area in Pleurenterium or remains abnormally dislocated in Micrasterias. The actin filament-dependent movement of secretory vesicles and smaller particles can be manipulated by the same IR-laser at 90 mW when functioning as optical tweezers. In Closterium lunula particles are displaced from their cytoplasmic tracks for up to 10 µm but return to their tracks immediately after removing the light pressure gained by the optical tweezers. The cytoplasmic tracks consist of actin filament cables running parallel to the longitudinal axis of Closterium cells as depicted by Alexa phalloidin staining and confocal laser scanning microscopy. Dynamics and extensibility of the cytoplasmic strands connecting particles to the tracks are also demonstrated in the area of large vacuoles which are surrounded by actin filament bundles. In Micrasterias trapping of secretory vesicles by the optical tweezers causes irreversible malformations of the cell shape. The vesicle accumulation itself dissipates within 30 s after removing the optical tweezers, also indicating reversibility of the effects induced, in the case of actin filament-mediated processes. [source]


Protein kinase G is involved in ammonia-induced swelling of astrocytes

JOURNAL OF NEUROCHEMISTRY, Issue 2009
Agnieszka Konopacka
Abstract Ammonia-induced swelling of astrocytes is a primary cause of brain edema associated with acute hepatic encephalopathy. Previous studies have shown that ammonia transiently increases cGMP in brain in vivo and in cultured astrocytes in vitro. We hypothesized that protein kinase G (PKG), an enzyme activated by cGMP and implicated in regulation of cell shape, size, and/or volume in peripheral and CNS cells, may play a role in the ammonia-induced astrocytic volume increase. Treatment of cultured rat cortical astrocytes with 1 or 5 mM NH4Cl (ammonia) for 24 h increased their cell volume by 50% and 80% above control, respectively, as measured by confocal imaging followed by 3D computational analysis. A cGMP analog, 8-(4-chlorophenylthio)-cGMP, increased the cell volume in control cells and potentiated the increase in 1 mM ammonia-treated cells. A soluble guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) abrogated, and a PKG inhibitor [8-(4-chlorophenylthio)-cGMP-thioate, Rp-isomer] dose-dependently reduced the cell volume-increasing effect of 5 mM ammonia. The results suggest that (i) PKG may play a permissive role in ammonia-induced astrocytic swelling and (ii) elevation of brain cGMP associated with acute exposure to ammonia in vivo may aggravate the ensuing brain edema. [source]


Granular cell tumor of the oral cavity: updated immunohistochemical profile

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 1 2009
Marilena Vered
Background:, Granular cell tumor (GCT) is a benign lesion that occurs at different body sites with preponderance to the oral cavity. It is generally believed to be of schwann cell/neural cell origin. We used a large panel of both traditional and recently developed antibodies in an attempt to trace the origin of GCTs on the basis of their immunoprofile. Methods:, The patients' demographic data and the cytological and architectural features of the lesions were analyzed in a large series of oral GCTs (n = 68). Forty-two lesions were also submitted to a panel of immunohistochemical stains with antibodies against S-100, CD-68 (KP-1 and PG-M1), vimentin, calretinin, NKI/C3, PGP9.5, p75/NGFR and inhibin-,. Results:, The tongue was the most common location of oral GCTs (81%). The granular cells demonstrated a wide array of cytological features in terms of cell shape and position of the nucleus. In addition, the lesions showed different architectural patterns, including ,infiltration' with satellite nodules. Interestingly, no recurrences were reported, even in lesions that were not completely excised. Granular cells were usually found to be strongly and diffusely positive for p75, vimentin, calretinin and NKI/C3, inhibin-,, PGP9.5, and S-100. Conclusions:, Immunoreactivity of the granular cells to a broad panel of antibodies that characterize different tissues does not confirm any particular cell type for the histogenetic origin of GCTs. Furthermore, GCTs could be regarded as lesions that reflect a local metabolic or reactive change rather than a true neoplasm. [source]


Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 11 2007
David O. Meredith
Abstract Stainless Steel (SS), titanium (cpTi), and Ti-6Al-7Nb (TAN) are frequently used metals in fracture fixation, which contact not only bone, but also soft tissue. In previous soft tissue cytocompatibility studies, TAN was demonstrated to inhibit cell growth in its "standard" micro-roughened state. To elucidate a possible mechanism for this inhibition, cell area, shape, adhesion, and cytoskeletal integrity was studied. Only minor changes in spreading were observed for cells on electropolished SS, cpTi, and TAN. Cells on "standard" cpTi were similarly spread in comparison with electropolished cpTi and TAN, although the topography influenced the cell periphery and also resulted in lower numbers and shorter length of focal adhesions. On "standard" microrough TAN, cell spreading was significantly lower than all other surfaces, and cell morphology differed by being more elongated. In addition, focal adhesion numbers and mean length were significantly lower on standard TAN than on all other surfaces, with 80% of the measured adhesions below a 2-µm threshold. Focal adhesion site location and maturation and microtubule integrity were compromised by the presence of protruding ,-phase microspikes found solely on the surface of standard TAN. This led us to propose that the impairment of focal adhesion numbers, maturation (length), and cell spreading to a possibly sufficient threshold observed on standard TAN blocks cell cycle progress and eventually cell growth on the surface. We believe, as demonstrated with standard cpTi and TAN, that a difference in surface morphology is influential for controlling cell behavior on implant surfaces. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1523,1533, 2007 [source]


Morphological and molecular examination of relationships and epitype establishment of Phacus pleuronectes, Phacus orbicularis, and Phacus hamelii,

JOURNAL OF PHYCOLOGY, Issue 5 2007
Sylwia Kosmala
Verification of morphological diagnostic features and the establishment of three epitypes for three species of Phacus Dujardin,Phacus pleuronectes (O. F. Müll.) Dujardin, Phacus orbicularis Hübner, and Phacus hamelii Allorge et Lefèvre,was performed based on literature studies and analysis of morphological (cell shape, cell size, and periplast ornamentation) as well as molecular (18S rDNA) characters. Periplast ornamentation was recognized as a main diagnostic character, distinguishing P. orbicularis from P. pleuronectes and P. hamelii. Phacus orbicularis has struts running perpendicular to the longitudinal axis of the strips, while P. pleuronectes and P. hamelii do not. On the SSU rDNA tree, obtained by the Bayesian method, P. orbicularis, P. pleuronectes, and P. hamelii belong to three distinct clades. Some of the phylogenetic relationships are not resolved, but there are at least three Phacus species (P. hamatus, P. platyaulax, P. longicauda; for taxonomic authors, see Introduction) that are more closely related to P. orbicularis than is P. pleuronectes. Phacus hamelii is more closely related to P. ranula and the assemblage of several species of Phacus, which have small cells, than to P. orbicularis or P. pleuronectes. [source]


Intensity-based signal separation algorithm for accurate quantification of clustered centrosomes in tissue sections

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 12 2006
Markus C. Fleisch
Abstract Centrosomes are small organelles that organize the mitotic spindle during cell division and are also involved in cell shape and polarity. Within epithelial tumors, such as breast cancer, and some hematological tumors, centrosome abnormalities (CAs) are common, occur early in disease etiology, and correlate with chromosomal instability and disease stage. In situ quantification of CA by optical microscopy is hampered by overlap and clustering of these organelles, which appear as focal structures. CA has been frequently associated with Tp53 status in premalignant lesions and tumors. Here the authors described an approach to accurately quantify centrosome frequencies in tissue sections and tumors, independently of background or noise levels. Applying simple optical rules in nondeconvolved conventional 3D images of stained tissue sections, the authors showed that they could evaluate more accurately and rapidly centrosome frequencies than with traditional investigator-based visual analysis or threshold-based techniques. The resulting population-based frequency of centrosomes per nucleus could then be used to approximate the proportion of cells with CA in that same population. This was done by taking into account baseline centrosome amplification and proliferation rates measured in the tissue. Using this technique, the authors showed that 20,30% of cells have amplified centrosomes in Tp53 null mammary tumors. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source]