| |||
Cell Nuclear Antigen Expression (cell + nuclear_antigen_expression)
Selected AbstractsIntermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apneaJOURNAL OF NEUROCHEMISTRY, Issue 4 2010Rolando Xavier Aviles-Reyes J. Neurochem. (2010) 112, 854,869. Abstract Sleep apnea (SA) can be effectively managed in humans but it is recognized that when left untreated, SA causes long-lasting changes in neuronal circuitry in the brain. Recent neuroimaging studies gave suggested that these neuronal changes are also present even in patients successfully treated for the acute effects of SA. The cellular mechanisms that account for these changes are not certain but animal models of intermittent hypoxia (IH) during sleep have shown neuronal death and impairment in learning and memory. Reactive gliosis has a drastic effect on neuronal survival and circuitry and in this study we examined the neuro-glial response in brain areas affected by SA. Glial and neuronal alterations were analyzed after 1, 3, 5 and 10 days of exposure to IH (8 h/day during the sleep phase, cycles of 6 min each, 10,21% O2) and observed significant astroglial hyperplasia and hypertrophy in parietal brain cortex and hippocampus by studying gliofibrillary acidic protein, Vimentin, S100B and proliferating cell nuclear antigen expression. In addition, altered morphology, reduced dendrite branching and caspase activation were observed in the CA-1 hippocampal and cortical (layers IV,V) pyramidal neurons at short exposure times (1,3 days). Surprisingly, longer exposure to IH reduced the neuronal death rate and increased neuronal branching in the presence of persistent reactive gliosis. Up-regulation of hypoxia inducible factor 1 alpha (HIF-1,) and mdr-1, a HIF-1, target gene, were observed and increased expression of receptor for advanced end glycated products and its binding partner S100B were also noted. Our results show that a low number of hypoxic cycles induce reactive gliosis and neuronal death whereas continuous exposure to IH cycles reduced the rate of neuronal death and induced neuronal branching on surviving neurons. We hypothesize that HIF-1, and S100B glial factor may improve neuronal survival under hypoxic conditions and propose that the death/survival/re-growth process observed here may underlie brain circuitry changes in humans with SA. [source] Ossification of the mouse metatarsal: Differentiation and proliferation in the presence/absence of a defined growth plateTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2006Philip L. Reno Abstract There is significant diversity in growth plate behavior among sites within an individual skeleton and between skeletons of different species. This variation within wild-type animals is an underutilized resource for studying skeletal development. One bone that potentially exhibits the most diverse behavior is the metatarsal. While one end forms a growth plate with an epiphyseal secondary center of ossification as in other long bones, the opposite end undergoes direct ossification in a manner more similar to short bones. Although descriptions of human metatarsal/metacarpal ossification are available, a detailed comparative analysis has yet to be conducted in an animal model amenable to biomolecular analysis. Here we report an analysis of proximal and distal ossification in an age series of mouse metatarsals. Safranin O staining was used for qualitative and quantitative histology, and chondrocyte differentiation and proliferation were analyzed using immunohistochemistry for type X collagen and proliferative cell nuclear antigen expression. We establish that, as in the human, both growth plate formation and direct ossification occur in the mouse metatarsal, with chondrocyte populations showing distinct differentiation patterns at opposite ends of the bone. In addition, growth plate formation is characterized by a peak of proliferation in reserve zone chondrocytes that distinguishes it from both established growth plates and direct ossification. Our analysis demonstrates that the mouse metatarsal is a productive model for investigating natural variation in ossification that can further understanding of vertebrate skeletal development and evolution. © 2005 Wiley-Liss, Inc. [source] MyoD, myogenin and proliferating cell nuclear antigen expression in growing Nile tilapia (Oreochromis niloticus L.)AQUACULTURE RESEARCH, Issue 15 2008Danilo Henrique Aguiar Abstract In the present study, immunohistochemical and morphometric analysis was used to characterize variations in muscle growth performance during muscle fibre recruitment and hypertrophy. As in fisheries, fish were classified into four age stages: alevin 35 days (0.65±0.08 g); juvenile 60 days (13.67±1.35 g); adult 90 days (73.18±4.70 g) and adult 190 days (349.76±34.62 g). The number of nuclei expressing MyoD and myogenin was similar in alevin, juvenile and adult 90 days; however, in adult 190 days, the number of nuclei expressing myogenin was higher than the number expressing MyoD. The number of proliferating cell nuclear antigen-stained nuclei in each stage was higher than MyoD and myogenin staining with peaks in alevin and adult 90 days. These data suggest that growth per se stimulated cellular proliferation and nuclei accretion of Nile tilapia muscle fibres in alevin, juvenile and adult 90 days. Muscle fibre differentiation was more pronounced in adult 190 days. [source] Oestrogen deficiency causes DNA damage in uterine leiomyoma cells: a possible mechanism for shrinkage of fibroids by GnRH agonistsBJOG : AN INTERNATIONAL JOURNAL OF OBSTETRICS & GYNAECOLOGY, Issue 1 2001Ya-Min Cheng Objective To examine whether gonadotrophin-releasing hormone agonist or oestradiol can directly affect DNA in leiomyoma cells. Design In vitro explant culture of leiomyoma cells. Setting University research group. Sample Leiomyoma cells were cultured from the specimens of four premenopausal women at myomectomy. Methods The presence of gonadotrophin-releasing hormone receptor in leiomyoma cells was determined by reverse transcriptase,olymerase chain reaction. Leiomyoma cells were treated with gonadotrophin-releasing hormone agonist or cultured in different concentrations of oestrogen, progesterone or fetal calf serum for one, four or seven days. Main outcome measures Cell number, expression of proliferating cell nuclear antigen, and DNA damage after one, four or seven days of treatment. Results Gonadotrophin-releasing hormone receptor messenger ribonucleic acid was detected on cultured leiomyoma cells. Leiomyoma cell growth was not affected by the addition of gonadotrophin-releasing hormone agonist or progesterone, but increased with oestrogen or fetal calf serum supplementation. Overexpression of proliferating cell nuclear antigen was prevented in cultures added with oestrogen or fetal calf serum, but not related to gonadotrophin-releasing hormone agonist treatment. Significant decreases in DNA damage as indicated by decreased comet number were found in the leiomyoma cultures treated with oestrogen or fetal calf serum for four and seven days but not with gonadotrophin-releasing hormone agonist or progesterone. Furthermore, 5% fetal calf serum supplementation was more growth supporting and more significantly reduced the comet number than 250 pM 17 , -oestradiol. Conclusion Cell growth, proliferating cell nuclear antigen expression and DNA damage are dependent on oestrogen or fetal calf serum, but independent of gonadotrophin-releasing hormone agonist or progesterone. Our findings suggest that gonadotrophin-releasing hormone agonist-induced leiomyoma shrinkage may be due in part to a mechanism involving DNA damage, and support the hypothesis that gonadotrophin-releasing hormone agonist exerts its action indirectly through oestrogen action on the tumour level. [source] |