Cell Network (cell + network)

Distribution by Scientific Domains


Selected Abstracts


Direct Microfabrication of Topographical and Chemical Cues for the Guided Growth of Neural Cell Networks on Polyamidoamine Hydrogels

MACROMOLECULAR BIOSCIENCE, Issue 8 2010
Gabriel Dos Reis
Abstract Cell patterning is an important tool for organizing cells in surfaces and to reproduce in a simple way the tissue hierarchy and complexity of pluri-cellular life. The control of cell growth, proliferation and differentiation on solid surfaces is consequently important for prosthetics, biosensors, cell-based arrays, stem cell therapy and cell-based drug discovery concepts. We present a new electron beam lithography method for the direct and simultaneous fabrication of sub-micron topographical and chemical patterns, on a biocompatible and biodegradable PAA hydrogel. The localized e-beam modification of a hydrogel surface makes the pattern able to adsorb proteins in contrast with the anti-fouling surface. By also exploiting the selective attachment, growth and differentiation of PC12 cells, we fabricated a neural network of single cells connected by neuritis extending along microchannels. E-beam microlithography on PAA hydrogels opens up the opportunity of producing multifunctional microdevices incorporating complex topographies, allowing precise control of the growth and organization of individual cells. [source]


Study of a fuel cell network with water electrolysis for improving partial load efficiency of a residential cogeneration system

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 8 2006
S. Obara
Abstract A fuel cell energy network which connects hydrogen and oxygen gas pipes, electric power lines and exhaust heat output lines of the fuel cell cogeneration for individual houses, respectively, is analysed. As an analysis case, the energy demand patterns of individual houses in Tokyo are used, and the analysis method for minimization of the operational cost using a genetic algorithm is described. The fuel cell network system of an analysis example assumed connecting the fuel cell cogeneration of five houses. If energy is supplied to the five houses using the fuel cell energy network proposed in this paper, 9% of city gas consumption will be reduced by the maximum from the results of analysis. Two per cent included with 9% is an effect of introducing water electrolysis operation of the fuel cells, corresponding to partial load operation of fuel cell cogeneration. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Modeling hippocampal theta oscillation: Applications in neuropharmacology and robot navigation

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, Issue 9 2006
Tamás Kiss
This article introduces a biologically realistic mathematical, computational model of theta (,5 Hz) rhythm generation in the hippocampal CA1 region and some of its possible further applications in drug discovery and in robotic/computational models of navigation. The model shown here uses the conductance-based description of nerve cells: Populations of basket cells, alveus/lacunosum-moleculare interneurons, and pyramidal cells are used to model the hippocampal CA1 and a fast-spiking GABAergic interneuron population for modeling the septal influence. Results of the model show that the septo-hippocampal feedback loop is capable of robust theta rhythm generation due to proper timing of pyramidal cells and synchronization within the basket cell network via recurrent connections. © 2006 Wiley Periodicals, Inc. Int J Int Syst 21: 903,917, 2006. [source]


RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cell organization

CANCER SCIENCE, Issue 10 2008
Wei Wang
The angiogenesis induced by tumor cells is essential for metastasis of hepatocellular carcinoma. Available information suggests that RhoC participates in angiogenesis through regulation of vascular endothelial growth factor expression in tumor cells. For its broad functions in cell migration and cytoskeletal organization, we hypothesized that RhoC regulating angiogenesis does not exclusively depend on regulation of vascular endothelial growth factor expression. To address this question, in the present study, we used a retroviral small interfering RNA approach to selectively knockdown the expression of RhoC in a neovascularization model in vivo and in vitro. Our present results indicate that RhoC is the downstream regulator of vascular endothelial growth factor in endothelial cells and is essential for angiogenesis induced by vascular endothelial growth factor, notwithstanding that RhoC regulates the expression of vascular endothelial growth factor in tumor cells. Furthermore, we show that knockdown of RhoC is associated with the inhibition of invasion and migration but not apoptosis of endothelial cells. Knockdown of RhoC results in inhibition of endothelial cell organization through restraining the reorganization of F-actin filaments, which represses endothelial cell network and sprout formation. In conclusion, our results demonstrate that knockdown of RhoC inhibits angiogenesis induced by tumor cells not only through effecting the release of vascular endothelial growth factor, but also through inhibiting endothelial cell migration and organization, which implies that it blocks tumor metastasis by specifically inhibiting RhoC in endothelial cells. (Cancer Sci 2008; 99: 2012,2018) [source]


Generation and propagation of gastric slow waves

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 4 2010
Dirk F Van Helden
Summary 1. Mechanisms underlying the generation and propagation of gastrointestinal slow wave depolarizations have long been controversial. The present review aims to collate present knowledge on this subject with specific reference to slow waves in gastric smooth muscle. 2. At present, there is strong agreement that interstitial cells of Cajal (ICC) are the pacemaker cells that generate slow waves. What has been less clear is the relative role of primary types of ICC, including the network in the myenteric plexus (ICC-MY) and the intramuscular network (ICC-IM). It is concluded that both ICC-MY and ICC-IM are likely to serve a major role in slow wave generation and propagation. 3. There has been long-standing controversy as to how slow waves ,propagate' circumferentially and down the gastrointestinal tract. Two mechanisms have been proposed, one being action potential (AP)-like conduction and the other phase wave-based ,propagation' resulting from an interaction of coupled oscillators. Studies made on single bundle gastric strips indicate that both mechanisms apply with relative dominance depending on conditions; the phase wave mechanism is dominant under circumstances of rhythmically generating slow waves and the AP-like propagation is dominant when the system is perturbed. 4. The phase wave mechanism (termed Ca2+ phase wave) uses cyclical Ca2+ release as the oscillator, with coupling between oscillators mediated by several factors, including: (i) store-induced depolarization; (ii) resultant electrical current flow/depolarization through the pacemaker cell network; and (iii) depolarization-induced increase in excitability of downstream Ca2+ stores. An analogy is provided by pendulums in an array coupled together by a network of springs. These, when randomly activated, entrain to swing at the same frequency but with a relative delay along the row giving the impression of a propagating wave. 5. The AP-like mechanism (termed voltage-accelerated Ca2+ wave) propagates sequentially like a conducting AP. However, it is different in that it depends on regenerative store Ca2+ release and resultant depolarization rather than regenerative activation of voltage-dependent channels in the cell membrane. 6. The applicability of these mechanisms to describing propagation in large intact gastrointestinal tissues, where voltage-dependent Ca2+ entry is also likely to be functional, is discussed. [source]


Symmetry and bifurcation in vestibular system

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2007
Marty Golubitsky
The vestibular system in almost all vertebrates, humans included, controls balance by employing a set of six semicircular canals, three in each inner ear, to detect angular accelerations of the head. Signals from the canals are transmitted to neck motoneurons and activate eight corresponding muscle groups. These signals may be either excitatory or inhibitory, depending on the direction of acceleration. McCollum and Boyle have observed that in the cat the network of neurons concerned possesses octahedral symmetry, a structure deduced from the known innervation patterns (connections) from canals to muscles. We re-derive the octahedral symmetry from mathematical features of the probable network architecture, and model the movement of the head in response to the activation patterns of the muscles concerned. We assume that connections among neck muscles can be modeled by a ,coupled cell network', a system of coupled ODEs whose variables correspond to the eight muscles, and that network also has octahedral symmetry. The network and its symmetries imply that these ODEs must be equivariant under a suitable action of the octahedral group. Using results of Ashwin and Podvigina, we show that with the appropriate group actions, there are six possible spatiotemporal patterns of time-periodic states that can arise by Hopf bifurcation from an equilibrium corresponding to natural head motions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Early onset of degenerative changes at nodes of Ranvier in alpha-motor axons of Cntf null (,/,) mutant mice

GLIA, Issue 4 2003
Kliment P. Gatzinsky
Abstract The nodes of Ranvier are sites of specific interaction between Schwann cells and axons. Besides their crucial role in transmission of action potentials, the nodes of Ranvier and in particular the paranodal axon-Schwann cell networks (ASNs) are thought to function as local centers in large motor axons for removal, degradation, and disposal of organelles. In order to test whether ciliary neurotrophic factor (CNTF), which is present at high levels in the Schwann cell cytoplasm, is involved in the maintenance of these structures, we have examined lumbar ventral root nerve fibers of alpha-motor neurons by electron microscopy in 3- and 9-month-old Cntf null (,/,) mutant mice. Nerve fibers and nodes of Ranvier in 3-month-old Cntf,/, mutants appeared morphologically normal, except that ASNs were more voluminous in the mutants than in wild-type control animals at this age. In 9-month-old Cntf,/, animals, morphological changes, such as reduction in nerve fiber and axon diameter, myelin sheath disruption, and loss of ASNs at nodes of Ranvier, were observed. These findings suggest that endogenous CNTF, in addition to its role in promoting motor neuron survival and regeneration, is needed for long-term maintenance of alpha-motor nerve fibers. The premature loss of paranodal ASNs in animals lacking CNTF, which seems to be a defect related to a disturbed interaction in the nodal region between the axon and its myelinating Schwann cells, could impede the maintenance of a normal milieu in the motor axon, preceding more general neuronal damage. GLIA 42:340,349, 2003. © 2003 Wiley-Liss, Inc. [source]


The Role of Cardiac Tissue Alignment in Modulating Electrical Function

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 12 2007
CHIUNG-YIN CHUNG M.S.
Introduction:,Most cardiac arrhythmias are associated with pathology-triggered ion channel remodeling. However, multicellular effects, for example, exaggerated anisotropy and altered cell-to-cell coupling, can also indirectly affect action potential morphology and electrical stability via changed electrotonus. These changes are particularly relevant in structural heart disease, including hypertrophy and infarction. Recent computational studies showed that electrotonus factors into stability by altering dynamic properties (restitution). We experimentally address the question of how cell alignment and connectivity alter tissue function and whether these effects depend on the direction of wave propagation. Methods and Results:,We show that cardiac cell arrangement can alter electrical stability in an in vitro cardiac tissue model by mechanisms both dependent and independent of the direction of wave propagation, and local structural remodeling can be felt beyond a space constant. Notably, restitution of action potential duration (APD) and conduction velocity was significantly steepened in the direction of cell alignment. Furthermore, prolongation of APD and calcium transient duration was found in highly anisotropic cell networks, both for longitudinal and transverse propagation. This is in contrast to expected correlation between wave propagation direction and APD based on electrotonic effects only, but is consistent with our findings of increased cell size and secretion of atrial natriuretic factor, a hypertrophy marker, in the aligned structures. Conclusion:,Our results show that anisotropic structure is a potent modulator of electrical stability via electrotonus and molecular signaling. Tissue alignment must be taken into account in experimental and computational models of arrhythmia generation and in designing effective treatment therapies. [source]


Follicular dendritic cells confirm lymphoid organization in the minor salivary glands of primary Sjögren's syndrome

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 9 2008
Malin V. Jonsson
Background:, Sjögren's syndrome (SS) is an autoimmune chronic inflammatory disorder affecting the salivary and lacrimal glands. The aim of this study was to explore immunophenotypic features of chronic inflammatory reactions in the minor salivary glands in patients with primary SS (pSS). Methods:, Formalin-fixed, paraffin-embedded labial minor salivary gland tissue sections from randomly selected patients with pSS (n = 60) were investigated for the expression of CD21, CD23, CD35 and IgD by immunohistochemistry. Results:, Based on the distribution and staining pattern of CD21, CD23, CD35 and IgD in lymphoid aggregates, several stages of chronic inflammatory reactions were observed. In 12/60 (20%) patients, lymphoid infiltrates with germinal centre (GC)-like features such as extensive networks of CD21-, CD23- and CD35-positive cells were observed in the minor salivary gland tissue. Smaller networks and,/or focal infiltrates with scattered CD21+, CD23+ and CD35+ cells were observed in the remaining 48/60 (80,%) cases. When dividing patients according to the presence (GC+) or the absence (GC,) of GC in the minor salivary glands, the mean focus score was significantly higher in the GC+ patients (P < 0.05). Double staining of the minor salivary glands revealed focal infiltrates with follicular dentritic cell networks and B cells resembling normal GCs in tonsillar tissue. Conclusion:, A particular cellular profile was demonstrated in a sub-group of patients with pSS and could be linked to serological aberrations. These findings warrant further prospective studies. [source]