Cell Mobilization (cell + mobilization)

Distribution by Scientific Domains

Kinds of Cell Mobilization

  • stem cell mobilization


  • Selected Abstracts


    Mobilization effects of G-CSF, GM-CSF, and darbepoetin-, for allogeneic peripheral blood stem cell transplantation

    JOURNAL OF CLINICAL APHERESIS, Issue 5 2009
    Shi Nae Kim
    Abstract The effects of GM-/G-CSF and darbepoetin-, on stem cell mobilization were investigated. From February 2005 to March 2007, 30 allogeneic sibling donors were randomly assigned to a G-CSF group (5 ,g/kg/day for 5,7 days) or triple group (GM-CSF 10 ,g/kg/day on 1st and 2nd day, G-CSF 5 ,g/kg/day for 5,7 days, and darbepoetin-, 40 mg on 1st day). The MNCs and CD34+ cells were not different between the two groups, although the doses (×108/kg of recipient body weight) of CD3+ cells (3.64 ± 1.75 vs. 2.63 ± 1.36, P = 0.089) and CD8+ cells (1.07 ± 0.53 vs. 0.60 ± 0.30, P = 0.006) were lower in the triple group. The engraftments, frequency of RBC transfusions, and hemoglobin recovery were not different between the two groups. The cumulative incidence of overall and Grades II,IV aGVHD was 64.3% vs. 61.1% and 25.9% vs. 27.1% in the G-CSF and triple regimen group, respectively, whereas the cumulative incidence of cGVHD was 20.8 ± 1.3% and 24.4 ± 1.7%, respectively. In conclusion, the triple regimen did not seem to be superior to G-CSF alone in terms of the CD34+ cell dose, hemoglobin recovery, and GVHD. However, the CD8+ cell count was significantly lower in the triple regimen group. The role of a lower CD8+ cell count in the graft may need to be elucidated in the future. J. Clin. Apheresis, 2009. © 2009 Wiley-Liss, Inc. [source]


    Predictive parameters for granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization

    JOURNAL OF CLINICAL APHERESIS, Issue 6 2008
    Akira Okano
    Abstract To improve the selection of donors for allogeneic stem cell transplantation, it is important to identify reliable parameters that predict CD34+-cell yields after granulocyte-colony stimulating factor (G-CSF)-induced peripheral blood stem cell (PBSC) mobilization. We retrospectively investigated the peripheral blood (PB) kinetics of white blood cells (WBCs), CD34+ cells, matrix metalloproteinases (MMP)-9 and -2, and tissue inhibitors of metalloproteinases (TIMP)-1 and -2 in 15 healthy donors during their treatment with G-CSF. All donors received 10 ,g/kg of recombinant human G-CSF once a day subcutaneously. Leukapheresis was initiated after 4 days of G-CSF treatment, and G-CSF treatment continued until the last day of leukapheresis. WBC and CD34+ cell numbers in the PB rose after 2 and 3 or 4 days of G-CSF treatment, respectively. The PB CD34+ cell numbers on day 4 correlated weakly with the increase in WBC counts from day 1 to day 2 (R2 = 0.254, P = 0.056). There were also positive correlations between the CD34+ cell numbers in the PBSC products on day 4 and the CD34+ cells in the PB on days 1 and 4 (R2 = 0.768, P < 0.0001 and R2 = 0.816, P < 0.0005, respectively). The MMP-9 plasma levels on days 1 and 4 also correlated positively with the day 4 circulating CD34+ cell numbers (R2 = 0.393, P < 0.05 and R2 = 0.406, P = 0.01, respectively). In conclusion, the CD34+ cell numbers in the PB steady state may be a useful parameter selecting allogeneic PBSC donors. J. Clin. Apheresis, 2008. © 2008 Wiley-Liss, Inc. [source]


    Optimizing peripheral stem cell mobilization and harvest in very small children

    JOURNAL OF CLINICAL APHERESIS, Issue 2 2005
    Caron Strahlendorf
    No abstract is available for this article. [source]


    Principles of Peripheral Blood Mononuclear Cell Apheresis in a Preclinical Canine Model of Hematopoietic Cell Transplantation

    JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 1 2008
    M. Lupu
    Background: Preclinical studies of peripheral blood mononuclear cell (PBMC) transplantation conducted in a well-established canine hematopoietic cell transplantation (HCT) model have been successfully translated to human patients over the past 5 decades. Objective: We retrospectively investigated the safety and feasibility of PBMC apheresis in the canine model of HCT by analyzing apheresis parameters, cell yields, and the impacts of donor-related and apheresis-related variables on collection yields and donor stability. Animals: One hundred and twenty dogs that underwent PBMC aphereses were evaluated. Methods: Aphereses were performed with a COBE Spectra blood separator and a central dual-lumen catheter, with or without recombinant canine granulocyte colony-stimulating factor (rcG-CSF) stem cell mobilization. Results: Aphereses from dogs not given rcG-CSF yielded an average volume of 280 ± 42 mL containing an average of 15,086 ± 9,834 leukocytes/mL. Aphereses from dogs given rcG-CSF yielded an average volume of 261 ± 55 mL containing an average of 39,711 ± 24,488 leukocytes/mL. Higher pre-apheresis white blood cell (WBC) counts correlated with higher apheresis WBC yields (R=0.50, P<.0001). The correlations of collection time, inlet volume, and collection flow rate on WBC yields were statistically significant but only weak to moderate in magnitude (R=0.34, P=.0001; R=0.38, P=.0006; R=0.26, P=.002, respectively) as were the correlations of collection time and inlet volume on collection volumes (R=0.30, P=.002; R=0.42, P<.0001, respectively). All dogs recovered promptly after PBMC aphereses and catheter removal, without complications. Conclusions and Clinical Importance: These data may be useful for translating PBMC apheresis technology to the field of veterinary oncology for the treatment of dogs with hematologic malignancies. [source]


    Retrospective comparison of mobilization methods for autologous stem cell transplantation in multiple myeloma,

    AMERICAN JOURNAL OF HEMATOLOGY, Issue 12 2009
    Hideki Nakasone
    The combination of cyclophosphamide and granulocyte-colony stimulating factor (G-CSF) has widely been used to mobilize hematopoietic stem cells (HSCs) for autologous stem cell transplantation (ASCT) for multiple myeloma (MM). Recently, however, alternative approaches such as G-CSF alone or etoposide followed by G-CSF have been investigated. We, therefore, retrospectively analyzed the effects of these mobilization methods on collection yield and disease outcome in ASCT for MM. We reviewed 146 MM patients from whom we intended to collect stem cells. For mobilization, 67, 58, and 21 patients received cyclophosphamide and G-CSF, etoposide and G-CSF, and G-CSF alone (including nonmyelosuppressive chemotherapy followed by G-CSF), respectively. Among them, 136 achieved the target number of HSCs (at least 2 × 106/kg). Lower creatinine and higher albumin levels at diagnosis were significantly associated with successful yield. A lower number of infused HSCs, use of the etoposide for mobilization and high ISS were associated with delayed hematopoietic recovery. The mobilization methods did not significantly affect either the successful collection of more than 2 × 106 CD34-positive cells/kg or PFS after ASCT. G-CSF alone was sufficient for stem cell mobilization for a single ASCT. The optimal approach to collect HSCs in MM remains to be elucidated. Am. J. Hematol., 2010. © 2009 Wiley-Liss, Inc. [source]


    Poor hematopoietic stem cell mobilizers: A single institution study of incidence and risk factors in patients with recurrent or relapsed lymphoma

    AMERICAN JOURNAL OF HEMATOLOGY, Issue 6 2009
    Chitra Hosing
    The purpose of this retrospective study was to determine the incidence and predictive factors if any, of mobilization failure in lymphoma patients referred for autologous stem cell transplantation. A total of 588 lymphoma patients were referred for transplant consultation from January 2003 to December 2004. Predictors of mobilization failure were evaluated using logistic regression analysis including diagnosis, mobilization regimen, age, sex, type and number of prior chemotherapies, bone marrow cellularity, platelet count, white count, prior bone marrow involvement with malignancy, and prior radiation therapy. Two hundred and six patients were eligible for transplantation and underwent stem cell mobilization. Twenty-nine (14%) patients failed to mobilize adequate stem cells after the first attempt. For the entire group age (,60 versus <60 years), diagnosis (Hodgkin's versus non-Hodgkin's lymphoma), use of cytokines alone, platelet count <150 × 109/L, and bone marrow cellularity <30% were significant predictors for mobilization failure on univariate analysis. In view of small number of patients multivariate analysis was not possible. However, a low platelet count (150 × 109/L) was the only significant predictor when the analysis was restricted to non-Hodgkin's lymphoma patients who were mobilized with chemotherapy. Mobilization failure rates are higher in patients with non-Hodgkin's lymphoma compared with those with Hodgkin's lymphoma. In the subset of patients who undergo chemomobilization for non-Hodgkin's lymphoma platelet count at the time of mobilization is a predictor of mobilization failure. Am. J. Hematol. 2009. © 2009 Wiley-Liss, Inc. [source]


    Reduced dose of lenograstim is as efficacious as standard dose of filgrastim for peripheral blood stem cell mobilization and transplantation: A randomized study in patients undergoing autologous peripheral stem cell transplantation

    AMERICAN JOURNAL OF HEMATOLOGY, Issue 8 2008
    Selmin Ataergin
    In vitro studies have demonstrated a 27% increased efficacy of lenograstim over filgrastim. However, equal doses of 10 ,g/kg/day of filgrastim and lenograstim have been recommended for mobilization of CD34+ cells without associated chemotherapy. In this study, we investigated whether a 25% reduced dose of lenograstim at 7.5 ,g/kg/day is equavalent to 10 ,g/kg/day filgrastim for autologous peripheral blood stem cell (PBSC) mobilization and transplantation. A total of 40 consecutive patients were randomized to either filgrastim (n = 20) or lenograstim (n = 20). The two cohorts were similar in regard to disease, sex, body weight, body surface area, conditioning regimens, previous chemotherapy cycles and radiotherapy. Each growth factor was administered for 4 consecutive days. The first PBSC apheresis was done on the 5th day. In the posttransplant period, the same G-CSF was given at 5 ,g/kg/day until leukocyte engraftment. Successful mobilization was achieved in 95% of patients. Successful mobilization with the first apheresis, was achieved in 10/20 (50%) patients in the filgrastim group versus 9/20 (46%) patients in the lenograstim group. No significant difference was seen in the median number of CD34+cells mobilized, as well as the median number of apheresis, median volume of apheresis, percentage of CD34+ cells, and CD34+ cell number. Leukocyte and platelet engraftments, the number of days requiring G-CSF and parenteral antibiotics, the number of transfusions were similar in both groups in the posttransplant period. Lenograstim 7.5 ,g/kg/day is as efficious as filgrastim 10 ,g/kg/day for autologous PBSC mobilization and transplantation. Am. J. Hematol., 2008. © 2008 Wiley-Liss, Inc. [source]


    Hypoxic preconditioning protects rat hearts against ischaemia,reperfusion injury: role of erythropoietin on progenitor cell mobilization

    THE JOURNAL OF PHYSIOLOGY, Issue 23 2008
    Jih-Shyong Lin
    Preconditioning, such as by brief hypoxic exposure, has been shown to protect hearts against severe ischaemia. Here we hypothesized that hypoxic preconditioning (HPC) protects injured hearts by mobilizing the circulating progenitor cells. Ischaemia,reperfusion (IR) injury was induced by left coronary ligation and release in rats kept in room air or preconditioned with 10% oxygen for 6 weeks. To study the role of erythropoietin (EPO), another HPC + IR group was given an EPO receptor (EPOR) antibody via a subcutaneous mini-osmotic pump 3 weeks before IR induction. HPC alone gradually increased haematocrit, cardiac and plasma EPO, and cardiac vascular endothelial growth factor (VEGF) only in the first two weeks. HPC improved heart contractility, reduced ischaemic injury, and maintained EPO and EPOR levels in the infarct tissues of IR hearts, but had no significant effect on VEGF. Interestingly, the number of CD34+CXCR4+ cells in the peripheral blood and their expression in HPC-treated hearts was higher than in control. Preconditioning up-regulated cardiac expression of stromal derived factor-1 (SDF-1) and prevented its IR-induced reduction. The EPOR antibody abolished HPC-mediated functional recovery, and reduced SDF-1, CXCR4 and CD34 expression in IR hearts, as well as the number of CD34+CXCR4+ cells in blood. The specificity of neutralizing antibody was confirmed in an H9c2 culture system. In conclusion, exposure of rats to moderate hypoxia leads to an increase in progenitor cells in the heart and circulation. This effect is dependent on EPO, which induces cell homing by increased SDF-1/CXCR4 and reduces the heart susceptibly to IR injury. [source]


    Efficacy of Bone Marrow Mononuclear Cells to Promote Bone Regeneration Compared With Isolated CD34+ Cells From the Same Volume of Aspirate

    ARTIFICIAL ORGANS, Issue 7 2010
    Shinji Yasuhara
    Abstract Autologous bone marrow mononuclear cell (BMMNC) transplantation is currently an emerging clinical treatment in the orthopedic as well as cardiovascular fields. It is believed that the therapeutic effect of the BMMNCs is due to neovascularization enhanced by the CD34+ cells contained therein, which include endothelial progenitor cells. However, isolation of the CD34+ cell fraction for clinical application has many disadvantages such as cost and invasiveness related to cell mobilization with cytokine. To investigate whether a purification step is in fact necessary for bone regeneration, we separated BMMNCs, CD34+, and CD34 - cells from the same initial volume of rabbit bone marrow aspirates. We then transplanted them back into a femoral bone defect of the same rabbit together with atelocollagen gel and basic fibroblast growth factor (bFGF) and evaluated neovascularization and bone regeneration up to 8 weeks after transplantation. The greatest potential for neovascularization and bone regeneration medicated by cells from the same volume of bone marrow aspirate was found in the BMMNC group. Although purified CD34+ cells might be an ideal cell source, BMMNCs could be a practical and feasible cell source for bone regeneration in present clinical settings with limited cost, availability of materials, and technical issues for transplantation. [source]


    Oestrogen Promotes Coronary Angiogenesis even under Normoxic Conditions

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 3 2008
    Mehdi Nematbakhsh
    Oestrogen has angiogenic properties under hypoxic condition, and if oestrogen also induces angiogenesis under normoxic condition, it could be used in combination with other angiogenic therapies in the treatment of ischaemic heart disease. In this study, we evaluated the angiogenic effect of high-dose oestrogen treatment in normoxic rat heart tissue. Fifty-two ovariectomized rats were randomized in oestrogen-treated and control groups. 17,-Oestradiol (1 mg/week) and normal saline (1 mg/week) were administered intramuscularly in the treatment and control groups for 2 months. After that, coronary capillary density and coronary vessel permeability were measured. The serum vascular endothelial growth factor (VEGF) level was also measured before and after the treatment. The results indicate that coronary capillary density (number of capillary per square millimetre) and coronary vessel permeability (fluorescence intensity) were significantly higher in the oestrogen-treated group than in the control group (628 ± 26 per mm2 versus 540 ± 26 per mm2; P < 0.05 and 207 ± 10 versus 147 ± 19 per gram tissue; P < 0.05). Oestrogen treatment increased serum VEGF level in the oestrogen-treated group compared to the control group (52 ± 3 versus 33 ± 6 pg/ml; P < 0.05), but interestingly VEGF was also increased in the control group after placebo treatment. It seems that high-dose oestrogen administration has angiogenic properties even in normoxic conditions. These angiogenic properties may result from oestrogen's direct effect on VEGF or other mechanisms, such as endothelial progenitor cell mobilization. Because of the broad effect of oestrogen on angiogenic growth factors and endothelial cells, more studies are required to clarify angiogenic properties of high-dose oestrogen. [source]


    Analysis of CD34+ cell subsets in stem cell harvests can more reliably predict rapidity and durability of engraftment than total CD34+ cell dose, but steady state levels do not correlate with bone marrow reserve

    BRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2001
    G. Pratt
    In peripheral blood stem cell transplantation (PBSCT), the number of CD34+ cells transplanted has been shown to correlate well with both rapidity and durability of engraftment. However, it is clear that engraftment does not necessarily correlate with total CD34+ cell numbers in some patients. Consequently, there is increasing interest in evaluating the role of CD34+ subsets in haemopoietic recovery as a more accurate marker of harvest quality. We analysed the numbers of CD34+ cell subsets, namely Thy-1+, L-Selectin+ and CD38,, and correlated this with engraftment in 86 patients undergoing PBSCT. Adequate engraftment was defined as being a platelet count greater than 50 × 109/l and a neutrophil count greater than 1·0 × 109/l. CD34+L-Selectin+ provided the best prediction of engraftment rapidity, although the improvement over total CD34+ cell dose was minor. Only the dose of CD34+Thy-1+ cells transplanted correlated with durable engraftment. The probability of adequate 3-month engraftment increased with the dose of CD34+ cells transplanted, but 10% of patients receiving >,5 × 106/kg still showed poor engraftment at 3 months. However, all patients receiving >,2·5 × 105/kg CD34+Thy-1+ showed adequate engraftment at this time point. We also demonstrated that CD34+Thy-1+ progenitors were restricted to the bone marrow under normal conditions and, during stem cell mobilization, their kinetics generally paralleled total CD34+ numbers. [source]


    A mathematical model of haemopoiesis as exemplified by CD34+ cell mobilization into the peripheral blood

    CELL PROLIFERATION, Issue 4 2004
    M. N. Obeyesekere
    This minimal model reflects the known kinetics of haemopoietic progenitor cells, including peripheral blood CD34+ cells, white blood cells and platelets, in the presence of granulocyte colony-stimulating factor. Reproducing known perturbations within this system, subjected to granulocyte colony-stimulating factor treatment and apheresis of peripheral blood progenitor cells (CD34+ cells) in healthy individuals allows validation of the model. Predictions are made with this model for reducing the length of time with neutropenia after high-dose chemotherapy. Results based on this model indicate that myelosuppressive treatment together with infusion of CD34+ peripheral blood progenitor cells favours a faster recovery of the haemopoietic system than with granulocyte colony-stimulating factor alone. Additionally, it predicts that infusion of white blood cells and platelets can relieve the symptoms of neutropenia and thrombocytopenia, respectively, without drastically hindering the haemopoietic recovery period after high dose chemotherapy. [source]