Cell Membrane Integrity (cell + membrane_integrity)

Distribution by Scientific Domains


Selected Abstracts


Ethanol Effects on Nitric Oxide Production in Cerebral Pial Cultures

ALCOHOLISM, Issue 4 2001
Chin-Lung Shih
Background: Although alcohol abusers are known to have higher incidences of hemorrhagic cerebrovascular diseases, it is not known whether these changes are associated with ethanol (EtOH) action on nitric oxide (NO) production in the cerebrovascular cells. The purpose of this study was to examine the effects of EtOH treatment on basal and cytokine-induced NO production in cortical pial cultures. Methods: Cell cultures for this study included murine primary pial vascular cells, primary glial cells and cortical neurons. These cells were exposed to cytokines or EtOH for 24 to 48 hr. The culture media were used for measurement of nitrite, as an indication for NO release, and lactate dehydrogenase (LDH), as an index of cell membrane integrity. In addition, immunocytochemical determinations were carried out to identify cell types and to assess inducible nitric oxide synthase (iNOS). Results: Exposure of primary pial vascular cultures to cytokines that consisted of interleukin-1, (IL-1,; 250 pg/mL) and interferon-, (IFN,; 2 ng/mL) or to EtOH (50 to 100 mM) for 24 to 48 hr significantly elevated NO production. NO production could be attenuated by N -nitro-L-arginine (N-arg), a nonspecific NOS inhibitor, or aminoguanidine (AG), an iNOS inhibitor. Increased iNOS immunoreactivity was observed in cytokines- or EtOH-treated pial cells. When pial cells were cocultured with cortical neurons, prolonged EtOH exposure led to a large increase in NO production as well as LDH release. However, this increase was not observed in pial culture alone or in mixed cortical culture. Nevertheless, inhibition of NO production with N-arg or AG did not alter the EtOH-induced LDH release in the pial cells cocultured with cortical neurons. Conclusion: These results show that EtOH exposure led to increased production of NO in primary pial cell culture. In mixed culture that contained cortical neurons and pial cells, EtOH induced increase in NO as well as LDH release, which is an indication of loss of cell membrane integrity. However, EtOH-mediated LDH release in mixed cortical pial cultures was not a consequence of the increase in NO production by these cells. Studies that use mixed cortical-pial cultures may provide a unique in vitro system for examining the interactions among glial cells, neurons, and cerebrovascular cells. [source]


Cellular response mechanisms in Pseudomonas aeruginosa PseA during growth in organic solvents

LETTERS IN APPLIED MICROBIOLOGY, Issue 3 2009
R. Gaur
Abstract Aims:, Solvent-tolerant bacteria have emerged as a new class of micro-organisms able to grow at high concentrations of toxic solvents. Such bacteria and their solvent-stable enzymes are perceived to be useful for biotransformations in nonaqueous media. In the present study, the solvent-responsive features of a lipase,producing, solvent-tolerant strain Pseudomonas aeruginosa PseA have been investigated to understand the cellular mechanisms followed under solvent-rich conditions. Methods and Results:, The solvents, cyclohexane and tetradecane with differing log P -values (3·2 and 7·6 respectively), have been used as model systems. Effect of solvents on (i) the cell morphology and structure (ii) surface hydrophobicity and (iii) permeability of cell membrane have been examined using transmission electron microscopy, atomic force microscopy and other biochemical techniques. The results show that (i) less hydrophobic (low log P -value) solvent cyclohexane alters the cell membrane integrity and (ii) cells adapt to organic solvents by changing morphology, size, permeability and surface hydrophobicity. However, no such changes were observed in the cells grown in tetradecane. Conclusions:, It may be concluded that P. aeruginosa PseA responds differently to solvents of different hydrophobicities. Bacterial cell membrane is more permeable to less hydrophobic solvents that eventually accumulate in the cytoplasm, while highly hydrophobic solvents have lesser tendency to access the membrane. Significance and Impact of the Study:, To the best of our knowledge, these are first time observations that show that way of bacterial solvent adaptability depends on nature of solvent. Difference in cellular responses towards solvents of varying log P -values (hydrophobicity) might prove useful to search for a suitable solvent for carrying out whole-cell biocatalysis. [source]


Morphological changes in mouse embryos cryopreserved by different techniques

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2007
A.R.S. Coutinho
Abstract Cryopreservation of mammalian embryos is an important tool for the application of reproductive biotechnologies. Subjective evaluation to determine embryo viability is often used. The determination of the best cryopreservation protocol depends on morphological and molecular analysis of cellular injuries. The main objective of this study was to compare two methods of cryopreservation by assessing morphological alterations of frozen embryos using light, fluorescence, and transmission electron microscope. Fresh (control), slow frozen, and vitrified mouse embryos were composed. To evaluate the viability of the embryos, the cell membrane integrity was assessed using Hoechst33342 and propidium iodide (H/PI) staining. Morphological analyses using hematoxylin and eosin (HE) staining were performed to test different techniques (in situ, paraffin, and historesin) by both light and fluorescence microscopy. Transmission electron microscope was used to detect ultrastructural alterations in Spurr- and Araldite-embedded samples. H/PI staining detected more membrane permeability in the vitrification (69.8%) than in the slow freezing (48.4%) or control (13.8%) groups (P < 0.001). Historesin-embedded samples showed to be more suitable for morphological analyses because cellular structures were better identified. Nuclear evaluation in historesin sections showed the induction of pycnosis in slow freezing and vitrification groups. Cytoplasm evaluation revealed a condensation and an increase in eosinophilic intensity (indicating apoptosis) in the slow freezing group, and weakly eosinophilic structures and degenerated cells (indicating oncosis) in the vitrification group (P < 0.05). Ultrastructural analyses confirmed HE morphological findings. It was concluded that both cryopreservation techniques resulted in oncosis and apoptosis injuries. However, vitrification caused more severe cellular alterations and reduced embryonic viability compared to slow freezing. Microsc. Res. Tech., 2007. © 2006 Wiley-Liss, Inc. [source]


Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery

THE JOURNAL OF GENE MEDICINE, Issue 5 2004
Naoki Kobayashi
Abstract Background The mechanisms underlying the efficient gene transfer by a large-volume and high-speed intravenous injection of naked plasmid DNA (pDNA), a so-called hydrodynamics-based procedure, remain unclear and require further investigation. In this report, we have investigated possible mechanisms for the intracellular transport of naked pDNA by this procedure. Methods Propidium iodide (PI), a fluorescent indicator for cell membrane integrity, and luciferase- or green fluorescent protein (GFP)-expressing pDNA were injected into mice by the hydrodynamics-based procedure. Results PI was efficiently taken up by hepatocytes which appeared to be viable following the hydrodynamics-based procedure. Pre-expressed GFP in the cytosol was rapidly eliminated from the hepatocytes by a large-volume injection of saline. The profiles of plasma ALT and AST showed a steady decline with the highest values observed immediately after the hydrodynamics-based procedure. These results suggest that the hydrodynamics-based procedure produces a transient increase in the permeability of the cell membrane. The cellular uptake process appeared nonspecific, since simultaneous injection of an excess of empty vector did not affect the transgene expression. Sequential injections of a large volume of pDNA-free saline followed by naked pDNA in a normal volume revealed that the increase in membrane permeability was transient, with a return to normal conditions within 30 min. Transgene expression was observed in hepatocyte cultures isolated 10 min after pDNA delivery and in the liver as early as 10 min after luciferase-expressing RNA delivery, indicating that pDNA delivered immediately by the hydrodynamics-based procedure has the potential to produce successful transgene expression. Conclusions These findings suggest that the mechanism for the hydrodynamics-based gene transfer would involve in part the direct cytosolic delivery of pDNA through the cell membrane due to transiently increased permeability. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Expression of Human Recombinant Antibody Fragments Capable of Partially Inhibiting the Phospholypase Activity of Crotalus durissus terrificus Venom

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 2 2009
Juliana G. Oliveira
It is composed of two different subunits: CA, crotapotin, and CB (basic subunit of cortoxin isolated from C. d. terrificus), a weakly toxic phospholipase A2 with high enzymatic activity. The phospholipases A2 are abundant in snake venoms and are responsible for disruption of cell membrane integrity via hydrolysis of its phospholipids. However, in addition to their normal digestive action, a wide range of pharmacological activities, such as neurotoxic, myotoxic, oedema-inducing, hypotensive, platelet-aggregating, cardiotoxic, and anticoagulant effects have been attributed to venom phospholipases A2. In this study, we used a non-immune human single-chain fragment variable library, Griffin.1 (Medical Research Council, Cambridge, UK) for selection of recombinant antibodies against antigens present in C. d. terrificus venom and identification of specific antibodies able to inhibit the phospholipase activity. Two clones were identified as capable of inhibiting partially this activity in vitro. These clones were able to reduce in vivo the myotoxic and oedema-inducing activity of CB and the lethality of C. d. terrificus venom and crotoxin, but had no effect on the in vitro anticoagulant activity of CB. These results demonstrate the potential of using recombinant single-chain fragment variable libraries in the production of antivenoms. [source]


Biokinetic models for representing the complete inhibition of microbial activity at high substrate concentrations

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2001
Gunaseelan Alagappan
Abstract This paper reintroduces the Wayman and Tseng model for representing substrate inhibition effects on specific growth rate by further documenting its potential predictive capabilities. It also introduces a modification to this model in which an Andrews inhibition function is used in place of the Monod noninhibitory substrate function. This modification better represents the relationship between specific growth rate and substrate concentration for those substrates that show Andrews type inhibition at lower substrate concentrations, rather than the Monod type noninhibitory behavior described in the model of Wayman and Tseng. Results from nonlinear, least squares regression analysis are used to evaluate the ability of these models to empirically represent experimental data (both new and from the literature). The statistical goodness of fit is evaluated by comparing the regression results against those obtained using other empirical models. Finally, possible mechanisms of toxicity responsible for the observed inhibition trends are used to further justify use of these empirical models. The dominant mechanism considered to be relevant for conceptually explaining complete inhibition at high concentrations of solvents is the deterioration of cell membrane integrity. Literature citations are used to support this argument. This work should lead to improvements in the mathematical modeling of contaminant fate and transport in the environment and in the simulation of microbial growth and organic compound biodegradation in engineered systems. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 75: 393,405, 2001. [source]