| |||
Cell Maintenance (cell + maintenance)
Kinds of Cell Maintenance Selected AbstractsRole for notch signaling in salivary acinar cell growth and differentiationDEVELOPMENTAL DYNAMICS, Issue 3 2009Howard Dang Abstract The Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. The Notch signaling is essential for Drosophila salivary gland development but its role in mammalian salivary gland remains unclear. The human salivary epithelial cell line, HSG, was studied to determine the role of Notch signaling in salivary epithelial cell differentiation. HSG expressed Notch 1 to 4, and the Notch ligands Jagged 1 and 2 and Delta 1. Treatment of HSG cells with inhibitors of ,-secretase, which is required for Notch cleavage and activation, blocked vimentin and cystatin S expression, an indicator of HSG differentiation. HSG differentiation was also associated with Notch downstream signal Hes-1 expression, and Hes-1 expression was inhibited by ,-secretase inhibitors. siRNA corresponding to Notch 1 to 4 was used to show that silencing of all four Notch receptors was required to inhibit HSG differentiation. Normal human submandibular gland expressed Notch 1 to 4, Jagged 1 and 2, and Delta 1, with nuclear localization indicating Notch signaling in vivo. Hes-1 was also expressed in the human tissue, with staining predominantly in the ductal cells. In salivary tissue from rats undergoing and recovering from ductal obstruction, we found that Notch receptors and ligands were expressed in the nucleus of the regenerating epithelial cells. Taken together, these data suggest that Notch signaling is critical for normal salivary gland cell growth and differentiation. Developmental Dynamics 238:724,731, 2009. © 2009 Wiley-Liss, Inc. [source] Reproduction and metabolism at , 10°C of bacteria isolated from Siberian permafrostENVIRONMENTAL MICROBIOLOGY, Issue 4 2003Corien Bakermans Summary We report the isolation and properties of several species of bacteria from Siberian permafrost. Half of the isolates were spore-forming bacteria unable to grow or metabolize at subzero temperatures. Other Gram-positive isolates metabolized, but never exhibited any growth at , 10°C. One Gram-negative isolate metabolized and grew at , 10°C, with a measured doubling time of 39 days. Metabolic studies of several isolates suggested that as temperature decreased below + 4°C, the partitioning of energy changes with much more energy being used for cell maintenance as the temperature decreases. In addition, cells grown at , 10°C exhibited major morphological changes at the ultrastructural level. [source] Here today , not gone tomorrow: Roles for activating receptors in sustaining NK cells during viral infectionsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2010Seung-Hwan Lee Abstract The conclusive evidence supporting a role for NK cells in defense against viruses has been obtained under conditions of NK cell deficiencies prior to infections. NK cell proliferation can be induced during infections, but the advantages of resulting expansion have been unclear because NK cell basal frequency is already high. However, NK cell decreases are also observed during certain conditions of viral infection. Given the range of potent antiviral and immunoregulatory functions of NK cells, such "disappearance" dramatically changes the resources available to the host. New studies demonstrate that proliferation dependent on activating receptors for virus-induced ligands is key for NK cell maintenance, and allows their continued availability for control of adaptive immune responses and immunopathology. This pathway for sustaining NK cells may represent a system used generally to select subsets for rescue during homeostatic purging. In the case of NK cells, though, nonselection limits continued access to the many beneficial functions of NK cells. The observations resolve the long-standing conundrum of reported NK cell increases and decreases during viral infections. Moreover, they demonstrate a previously unappreciated role for activating receptors, i.e. to keep NK cells here today and also tomorrow. [source] Absence of Gup1p in Saccharomyces cerevisiae results in defective cell wall composition, assembly, stability and morphologyFEMS YEAST RESEARCH, Issue 7 2006Célia Ferreira Abstract Saccharomyces cerevisiae Gup1p and its homologue Gup2p, members of the superfamily of membrane-bound O -acyl transferases, were previously associated with glycerol-mediated salt-stress recovery and glycerol symporter activity. Several other phenotypes suggested Gup1p involvement in processes connected with cell structure organization and biogenesis. The gup1, mutant is also thermosensitive and exhibits an altered plasma membrane lipid composition. The present work shows that the thermosensitivity is independent of glycerol production and retention. Furthermore, the mutant grows poorly on salt, ethanol and weak carboxylic acids, suggestive of a malfunctioning membrane potential. Additionally, gup1, is sensitive to cell wall-perturbing agents, such as Calcofluor white, Zymolyase, lyticase and sodium dodecyl sulphate and exhibits a sedimentation/aggregation phenotype. Quantitative analysis of cell wall components yielded increased contents of chitin and ,-1,3-glucans and lower amounts of mannoproteins. Consistently, scanning electron microscopy showed a strikingly rough surface morphology of the mutant cells. These results suggest that the gup1, is affected in cell wall assembly and stability, although the Slt2p/MAP kinase from the PKC pathway was phosphorylated during hypo-osmotic shock to a normal extent. Results emphasize the pleiotropic nature of gup1,, and are consistent with a role of Gulp1p in connection with several pathways for cell maintenance and construction/remodelling. [source] Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their nichesJOURNAL OF ANATOMY, Issue 1 2008Vanja Pekovic Abstract Adult stem cells have been identified in most mammalian tissues of the adult body and are known to support the continuous repair and regeneration of tissues. A generalized decline in tissue regenerative responses associated with age is believed to result from a depletion and/or a loss of function of adult stem cells, which itself may be a driving cause of many age-related disease pathologies. Here we review the striking similarities between tissue phenotypes seen in many degenerative conditions associated with old age and those reported in age-related nuclear envelope disorders caused by mutations in the LMNA gene. The concept is beginning to emerge that nuclear filament proteins, A-type lamins, may act as signalling receptors in the nucleus required for receiving and/or transducing upstream cytosolic signals in a number of pathways central to adult stem cell maintenance as well as adaptive responses to stress. We propose that during ageing and in diseases caused by lamin A mutations, dysfunction of the A-type lamin stress-resistant signalling network in adult stem cells, their progenitors and/or stem cell niches leads to a loss of protection against growth-related stress. This in turn triggers an inappropriate activation or a complete failure of self-renewal pathways with the consequent initiation of stress-induced senescence. As such, A-type lamins should be regarded as intrinsic modulators of ageing within adult stem cells and their niches that are essential for survival to old age. [source] Dietary restriction enhances germline stem cell maintenanceAGING CELL, Issue 5 2010William Mair Summary Dietary restriction (DR) increases lifespan in species ranging from yeast to primates, maintaining tissues in a youthful state and delaying reproductive senescence. However, little is known about the mechanisms by which this occurs. Here we demonstrate that, concurrent with extending lifespan, DR attenuates the age-related decline in male germline stem cell (GSC) number in Drosophila. These data support a model whereby DR enhances maintenance of GSCs to extend the reproductive period of animals subjected to adverse nutritional conditions. This represents the first example of DR maintaining an adult stem cell pool and suggests a potential mechanism by which DR might delay aging in the tissues of higher organisms. [source] Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblastsJOURNAL OF CUTANEOUS PATHOLOGY, Issue 7 2008Briana C. Gleason Background:, The mechanisms whereby melanocytes populate the epidermis and developing hair follicles during embryogenesis are incompletely understood. Recent evidence implicates an intermediate mesenchymal stage in this evolutionary process in which HMB-45-positive melanocyte precursors (,melanoblasts') exist both in intradermal as well as intraepithelial and intrafollicular compartments. The melanocyte master transcriptional regulator, microphthalmia transcription factor (MITF), identifies mature melanocytes as well as melanocyte precursor stem cells that reside in the bulge region of the hair follicle. Methods:, To better define the use of MITF expression in the evaluation of melanocyte ontogeny, human embryonic and fetal skin samples (n = 28) at 6,24 weeks gestation were studied immunohistochemically for expression of MITF and Mart-1. Adjacent step sections were evaluated to correlate staining patterns with cell localization in the intraepidermal, intrafollicular and intradermal compartments. Results:, At 6,8 weeks, MITF and Mart-1-positive cells were primarily intradermal with only rare positive cells in the epidermis. By 12,13 weeks, most of these cells had migrated into the epidermis, predominantly the suprabasal layers. Between 15,17 weeks, these cells localized to the basal layer and colonized developing hair follicles. Rare intradermal MITF and Mart-1 positive cells were found as late as week 20. At 18,24 weeks, MITF and Mart-1 positive cells were identified in the outer root sheath, bulge, and follicular bulge epithelium, in addition to the epidermis. Unexpectedly, weak but diffuse nuclear MITF expression was also present in the keratinocytes of the bulge area. Conclusions:, The in situ migratory fate of MITF/Mart-1-expressing cells in fetal skin involves a well-defined progression from intradermal to intraepidermal to intrafollicular localization. Occasional intradermal melanocytes may persist after the intraepithelial stages are completed, a finding of potential significance to melanocytic proliferations that may arise de novo within the dermis. Because MITF may play a role in stem cell maintenance, the presence of MITF in bulge epithelial cells suggests that it may be a novel marker for follicular stem cells of both epithelial and melanocytic lineage. [source] Adult cerebrospinal fluid inhibits neurogenesis but facilitates gliogenesis from fetal rat neural stem cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2009Judith Buddensiek Abstract Neural stem cells (NSCs) are a promising source for cell replacement therapies for neurological diseases. Administration of NSCs into the cerebrospinal fluid (CSF) offers a nontraumatic transplantation method into the brain. However, cell survival and intraparenchymal migration of the transplants are limited. Furthermore, CSF was recently reported to be an important milieu for controlling stem cell processes in the brain. We studied the effects of adult human leptomeningeal CSF on the behavior of fetal rat NSCs. CSF increased survival of NSCs compared with standard culture media during stem cell maintenance and differentiation. The presence of CSF enhanced NSC differentiation, leading to a faster loss of self-renewal capacity and faster and stronger neurite outgrowth. Some of these effects (mainly cell survival, neurite brancing) were blocked by addition of the bone morphogenic protein (BMP) inhibitor noggin. After differentiation in CSF, significantly fewer MAP2ab+ neurons were found, but there were more GFAP+ astroglia compared with standard media. By RT-PCR analysis, we determined a decrease of mRNA of the NSC marker gene Nestin but an increase of Gfap mRNA during differentiation up to 72 hr in CSF compared with standard media. Our data demonstrate that adult human leptomeningeal CSF enhances cell survival of fetal rat NSCs during proliferation and differentiation. Furthermore, CSF provides a stimulus for gliogenesis but inhibits neurogenesis from fetal NSCs. Our data suggest that CSF contains factors such as BMPs regulating NSC behavior, and we hypothesize that fast differentiation of NSCs in CSF leads to a rapid loss of migration capacity of intrathecally transplanted NSCs. © 2009 Wiley-Liss, Inc. [source] A membrane-bound FtsH protease is involved in osmoregulation in Synechocystis sp.MOLECULAR MICROBIOLOGY, Issue 1 2007PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis Summary Protein quality control and proteolysis are involved in cell maintenance and environmental acclimatization in bacteria and eukaryotes. The AAA protease FtsH2 of the cyanobacterium Synechocystis sp. PCC 6803 was identified during a screening for mutants impaired in osmoregulation. The ftsH2, mutant was salt sensitive because of a decreased level of the osmoprotectant glucosylglycerol (GG). In spite of wild type-like transcription of the ggpS gene in ftsH2, cells the GgpS protein content increased but only low levels of GgpS activity were observed. Consequently, salt tolerance of the ftsH2, mutant decreased while addition of external osmolyte complemented the salt sensitivity. The proteolytic degradation of the GgpS protein by FtsH2 was demonstrated by an in vitro assay using inverted membrane vesicles. The GgpS is part of a GG synthesizing complex, because yeast two-hybrid screens identified a close interaction with the GG-phosphate phosphatase. Besides GgpS as the first soluble substrate of a cyanobacterial FtsH protease, several other putative targets were identified by a proteomic approach. We present a novel molecular explanation for the salt-sensitive phenotype of bacterial ftsH, mutants as the result of accumulation of inactive enzymes for compatible solute synthesis, in this case GgpS the key enzyme of GG synthesis. [source] Lhx2,decisive role in epithelial stem cell maintenance, or just the "tip of the iceberg"?BIOESSAYS, Issue 12 2006Stephan Tiede Stem cell self renewal, maintenance and differentiation are influenced by the convergence of intrinsic cellular signals and extrinsic microenvironmental cues from the surrounding stem cell niche. However, the specific signals involved are often still poorly understood. This is also true for skin epithelial stem cells. Recently, by transcriptionally profiling of embryonic hair progenitors in mice, Rhee et al.1 have managed to define how murine hair follicle epithelial stem cells are specified and maintained in an undifferentiated state. These authors have identified Lhx2 as a transcription factor functionally positioned downstream of signals necessary to specify hair follicle stem cells such as p63 or NF,B, but upstream of signals like Wnt/,-catenin, Bmp or Shh that are required to drive activated stem cells via the production of transient amplifying cells into terminal differentiation. BioEssays 28: 1157,1160, 2006. © 2006 Wiley Periodicals, Inc. [source] Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo methodBIOTECHNOLOGY PROGRESS, Issue 1 2010Zizhuo Xing Abstract Markov chain Monte Carlo (MCMC) method was applied to model kinetics of a fed-batch Chinese hamster ovary cell culture process in 5,000-L bioreactors. The kinetic model consists of six differential equations, which describe dynamics of viable cell density and concentrations of glucose, glutamine, ammonia, lactate, and the antibody fusion protein B1 (B1). The kinetic model has 18 parameters, six of which were calculated from the cell culture data, whereas the other 12 were estimated from a training data set that comprised of seven cell culture runs using a MCMC method. The model was confirmed in two validation data sets that represented a perturbation of the cell culture condition. The agreement between the predicted and measured values of both validation data sets may indicate high reliability of the model estimates. The kinetic model uniquely incorporated the ammonia removal and the exponential function of B1 protein concentration. The model indicated that ammonia and lactate play critical roles in cell growth and that low concentrations of glucose (0.17 mM) and glutamine (0.09 mM) in the cell culture medium may help reduce ammonia and lactate production. The model demonstrated that 83% of the glucose consumed was used for cell maintenance during the late phase of the cell cultures, whereas the maintenance coefficient for glutamine was negligible. Finally, the kinetic model suggests that it is critical for B1 production to sustain a high number of viable cells. The MCMC methodology may be a useful tool for modeling kinetics of a fed-batch mammalian cell culture process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemiaBRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2008E. Jost Summary The Wnt signalling pathway has a key function in stem cell maintenance and differentiation of haematopoietic progenitors. Secreted Frizzled-related protein genes (SFRPs), functioning as Wnt signalling antagonists, have been found to be downregulated by promoter hypermethylation in many tumours. To analyse epigenetic dysregulation of SFRPs in acute myeloid leukaemia (AML), we examined the promoter methylation status of SFRP1, - 2, - 4 and - 5 in AML cell lines by methylation-specific polymerase chain reaction (MSP). Aberrant CpG island methylation was found for all four SFRP genes. By real-time reverse transcription-PCR, corresponding transcriptional silencing for SFRP1 and - 2 was demonstrated and treatment of cell lines with 5-aza -2,-deoxycytidine resulted in re-expression. The methylation status of the SFRP genes was analysed in 100 specimens obtained from AML patients at diagnosis. The frequencies of aberrant methylation among the patient samples were 29% for SFRP1, 19% for SFRP2, 0% for SFRP4 and 9% for SFRP5. For SFRP2, a correlation between promoter hypermethylation and transcriptional downregulation was found in primary AML samples. Among AML cases with a favourable karyotype, hypermethylation of SFRP genes was restricted to patients with core binding factor (CBF) leukaemia, and aberrant methylation of the SFRP2 promoter was an adverse risk factor for survival in CBF leukaemia. [source] Novel therapeutic approach to eradicate tyrosine kinase inhibitor resistant chronic myeloid leukemia stem cellsCANCER SCIENCE, Issue 7 2010Kazuhito Naka Although discovery of the tyrosine kinase inhibitor (TKI) imatinib mesylate has significantly improved the prognosis of chronic myeloid leukemia (CML) patients, a rare population of CML stem cells is known to be resistant to TKI therapy, causing recurrence of CML. However, recent progress in CML stem cell biology may present a novel therapeutic avenue for CML patients. In this review, we focus on mechanisms used by CML stem cells to maintain TKI-resistance. Comprehensive approaches including mouse genetics, prospective identification of CML stem cells, and syngenic transplantation techniques have identified several key molecules or signaling pathways, including hedgehog (Hh)/Smo, promyelocytic leukemia (PML), 5-lipoxygenase (5-LO), and forkhead box class O (FOXO), that function in CML stem cell maintenance. Inhibiting some of these factors in combination with TKI administration successfully antagonized resistance of CML stem cells to TKI therapy, resulting in efficient eradication of leukemia cells in vivo. Thus, development of methods that sensitize CML stem cells to TKI therapy may lead to novel therapies to treat CML patients. (Cancer Sci 2010) [source] Characterization within and around the Limbal Epithelial CryptACTA OPHTHALMOLOGICA, Issue 2007AM YEUNG Purpose: The Limbal Epithelial Crypt (LEC) is an anatomical structure that is found between the junction of the cornea and sclera and is in a unique position to make it an ideal structure to examine further. Previous studies have demonstrated the LEC to have properties that suggest it may be a stem cell niche. Basal cells of the LEC are significantly smaller than basal cells found in adjacent rete pegs, and morphologically they have a higher nuclear:cytoplasmic ratio. We set out to examine LEC further by exploring the surrounding LEC matrix proteins, and with known differentiation markers. Methods: Donated corneo-sclero rims were cut into eight equal sized pieces and frozen. Each piece was cut into 7,m serial sections, and was examined by microscopy for LEC structures. Identified LEC was collected on slides and stored until they were fixed in acetone and processed by standard immunofluorescence techniques for each differentiation marker. Results: Tenacin C was more positively taken up by the basement membrane of the LEC compared with the surrounding limbus. In addition, staining for desmoglein was negative against isolated small subpopulations of cells within the basal regions of the LEC. Conclusions: The LEC structure demonstrates properties that may identify this as a possible stem cell niche. Further studies are necessary to determine the significance of the LEC in its role in stem cell maintenance. [source] |