Cell Layer (cell + layer)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Cell Layer

  • basal cell layer
  • dentate granule cell layer
  • endothelial cell layer
  • epithelial cell layer
  • ganglion cell layer
  • granular cell layer
  • granule cell layer
  • granulosa cell layer
  • purkinje cell layer
  • pyramidal cell layer
  • suprabasal cell layer


  • Selected Abstracts


    Disruption of nasopharyngeal epithelium by pneumococci is density-linked

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2003
    K. Lagrou
    Abstract Background The aim of this project was to study the influence of pneumococci on nasopharyngeal epithelial integrity as a function of time and pneumococcal density. Materials and methods Cell layers of an in vitro model of human nasopharyngeal epithelium were inoculated with different pneumococcal strains. The transepithelial electrical resistance (TEER), a measure of the integrity of the cell layers, and the pneumococcal concentration in the apical fluid on the epithelial cells were measured at different times after inoculation. Results Pneumococci caused a decrease in the TEER when a density of 1 × 107 CFU mL,1 was reached. The growth rate of pneumococci in our in vitro model differed between the strains tested and, for the same strain, between in vitro culture on the epithelial cells and broth culture. Differences in timing of the onset of decrease in the TEER between strains were the result of differences in growth rate on the epithelial cells. Antibiotic-induced lysis of pneumococci caused an immediate decrease in the TEER of the cell layers. Conclusion Pneumococci cause a decrease in the TEER at a density of 1 × 107 CFU mL,1. Our hypothesis is that this decrease in the TEER is the result of quorum-induced lysis of the pneumococci. [source]


    Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2003
    Ryan M. Porter
    Abstract Dexamethasone is capable of directing osteoblastic differentiation of bone marrow stromal cells (BMSCs) in vitro, but its effects are not lineage-specific, and sustained exposure has been shown to down-regulate collagen synthesis and induce maturation of an adipocyte subpopulation within BMSC cultures. Such side effects might be reduced if dexamethasone is applied in a regimented manner, but the discrete steps in osteoblastic maturation that are stimulated by dexamethasone are not known. To examine this, dexamethasone was added to medium to initiate differentiation of rat BMSCs cultures and then removed after a varying number of days. Cell layers were analyzed for cell number, rate of collagen synthesis, expression of osteocalcin (OC), bone sialoprotein (BSP) and lipoprotein lipase (LpL), and matrix mineralization. Withdrawal of dexamethasone at 3 and 10 days was found to enhance cell number relative to continuous exposure, but did not affect to decrease collagen synthesis slightly. Late markers of osteoblastic differentiation, BSP expression and matrix mineralization, were also sensitive to dexamethasone and increased systematically with exposure while LpL systematically decreased. These results indicate that dexamethasone acts at both early and late stages to direct proliferative osteoprogenitor cells toward terminal maturation. J. Cell. Biochem. 90: 13,22, 2003. © 2003 Wiley-Liss, Inc. [source]


    Development and fine structure of the yolk nucleus of previtellogenic oocytes in the medaka Oryzias latipes

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2000
    Hirokuni Kobayashi
    The development and fine structure of yolk nuclei in the cytoplasm of previtellogenic oocytes were examined by electron microscopy during several stages of oogenesis in the medaka, Oryzias latipes. Shortly after oogenesis starts, oocytes 20,30 ,m in diameter have much electron-dense (basophilic) cytoplasm, within which a continuous or discontinuous, irregular ring-shaped lower electron-dense area of flocculent appearance (LF) begins to emerge around the nucleus. The yolk nucleus is first recognized within an LF area as a few fragments of dense granular thread measuring 20,25 nm in width. The threads consist of two rows of very dense granules resembling ribosomes or ribonucleoprotein (RNP)-like particles in size and electron density. These thread-like fragments gradually increase in number and length until they assemble into a compact, spherical mass of complicated networks. Analysis of serial sections suggests that the yolk nucleus is a complicated mass of numerous, small deformed vacuoles composed of a single lamella with double layers of ribosomes or RNP-like granules, rather than a mass of granular threads. When oocytes develop to greater than 100 ,m in diameter, the yolk nucleus begins to fragment before dispersing throughout the surrounding cytoplasm, concomitantly with the disappearance of LF areas. At this stage of oogenesis, a restricted region of the granulosa cell layer adjacent to the yolk nucleus becomes somewhat columnar in morphology, fixing the vegetal pole region of the oocyte. [source]


    Zac1 promotes a Müller glial cell fate and interferes with retinal ganglion cell differentiation in Xenopus retina

    DEVELOPMENTAL DYNAMICS, Issue 1 2007
    Lin Ma
    Abstract The timing of cell cycle exit is tightly linked to cell fate specification in the developing retina. Accordingly, several tumor suppressor genes, which are key regulators of cell cycle exit in cancer cells, play critical roles in retinogenesis. Here we investigated the role of Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, in retinal development. Strikingly, in gain-of-function assays in Xenopus, mouse Zac1 promotes proliferation and apoptosis at an intermediate stage of retinogenesis. Zac1 also influences cell fate decisions, preferentially promoting the differentiation of tumor-like clusters of abnormal neuronal cells in the ganglion cell layer, as well as inducing the formation of supernumerary Müller glial cells at the expense of other cell types. Thus Zac1 has the capacity to influence cell cycle exit, and cell fate specification and differentiation decisions by retinal progenitors, suggesting that further functional studies will uncover new insights into how retinogenesis is regulated. Developmental Dynamics 236:192,202, 2007. © 2006 Wiley-Liss, Inc. [source]


    Cerebellar granule cells show age-dependent migratory differences in vitro

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2005
    Krisztián Tárnok
    Abstract Developmental differences between cerebellar granule cells during their migratory period were revealed using dissociated granule cell cultures isolated from 4, 7, or 10 days old (P4, P7, P10) mice. Under all culture conditions, the great majority of cultivated cell populations consisted of those granule cells that had not reach their final destination in the internal granule cell layer (IGL) by the age of isolation. In vitro morphological development and the expression of migratory markers (TAG-1, astrotactin, or EphB2) showed similar characteristics between the cultures. The migration of 1008 granule cells isolated from P4, P7, and P10 cerebella and cultivated under identical conditions were analyzed using statistical methods. In vitro time-lapse videomicroscopy revealed that P4 cells possessed the fastest migratory speed while P10 granule cells retained their migratory activity for the longest time in culture. Cultures obtained from younger postnatal ages showed more random migratory trajectories than P10 cultures. Our observations indicate that despite similar morphological and molecular properties, migratory differences exist in granule cell cultures isolated from different postnatal ages. Therefore, the age of investigation can substantially influence experimental results on the regulation of cell migration. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source]


    Changing patterns of ganglion cell coupling and connexin expression during chick retinal development

    DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2002
    David L. Becker
    Abstract We have used dye injection and immunolabeling to investigate the relationship between connexin (Cx) expression and dye coupling between ganglion cells (GCs) and other cells of the embryonic chick retina between embryonic days 5 and 14 (E5,14). At E5, GCs were usually coupled, via soma-somatic or dendro-somatic contacts, to only one or two other cells. Coupling increased with time until E11 when GCs were often coupled to more than a dozen other cells with somata in the ganglion cell layer (GCL) or inner nuclear layer (INL). These coupled clusters occupied large areas of the retina and coupling was via dendro-dendritic contacts. By E14, after the onset of synaptogenesis and at a time of marked cell death, dye coupling was markedly decreased with GCs coupled to three or four partners. At this time, coupling was usually to cells of the same morphology, whereas earlier coupling was heterogeneous. Between E5 and E11, GCs were sometimes coupled to cells of neuroepithelial morphology that spanned the thickness of the retina. The expression of Cx 26, 32, and 43 differed and their distribution changed during the period studied, showing correlation with events such as proliferation, migration, and synaptogenesis. These results suggest specific roles for gap junctions and Cx's during retinal development. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 280,293, 2002 [source]


    Labial Gland and Its Protein Patterns of Hydropsychid Caddisfly (Hydropsyche kozhantschikovi Martynov: Trichoptera)

    ENTOMOLOGICAL RESEARCH, Issue 1 2003
    Sang-Chan PARK
    ABSTRACT There is a pair of labial gland of hydropsychid caddisfly (Hydropsyche kozhantschikovi Martynov) larva. It is in ,Z' formation in the body and the total length is about 20 mm. Hydropsychid caddishfly larvae that were raised under the lab conditions were able to form a nest-spining by connecting the small grains of sand provided. By repeatedly treating the extracted labial gland with methanol/D.W., the cell layer was removed. Accordingly, only the matrix within the labial gland that did not dissolve in water was obtained. The matrix inside the methanol/D.W. treated labial gland was dissolved with 5% acetic acid. Then the results of an acidic electrophoresis with a number of conditions indicated that 5% acetic acid/ 5 M urea/ 8% PAGE was the most effective. Moreover, the result of 2-D PAGE on the labial gland of these hydropsychid caddisfly larva, the number of proteins in the labial gland including the cell layer was about 350 and the number of proteins in the labial gland treated with methanol/D.W. was about 80, showing a substantially small number of proteins. [source]


    Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter

    ENVIRONMENTAL MICROBIOLOGY, Issue 7 2009
    e Váchová
    Summary Yeasts, when growing on solid surfaces, form organized multicellular structures, colonies, in which cells differentiate and thus possess different functions and undergo dissimilar fate. Understanding the principles involved in the formation of these structures requires new approaches that allow the study of individual cells directly in situ without needing to remove them from the microbial community. Here we introduced a new approach to the analysis of whole yeast microcolonies either containing specific proteins labelled by fluorescent proteins or stained with specific dyes, by two-photon excitation confocal microscopy. It revealed that the colonies are covered with a thin protective skin-like surface cell layer which blocks penetration of harmful compounds. The cells forming the layer are tightly connected via cell walls, the presence of which is essential for keeping of protective layer function. Viewing the colonies from different angles allowed us to reconstruct a three-dimensional profile of the cells producing ammonium exporter Ato1p within developing microcolonies growing either as individuals or within a group of microcolonies. We show that neighbouring microcolonies coordinate production of Ato1p-GFP. Ato1p itself appears synchronously in cells, which do not originate from the same ancestor, but occupy specific position within the colony. [source]


    Hippocampal Malformations Do Not Necessarily Evolve into Hippocampal Sclerosis

    EPILEPSIA, Issue 6 2005
    Arjune Sen
    Summary:,Purpose: Hippocampal malformations have been proposed to underlie or evolve into hippocampal sclerosis, a common cause of refractory partial epilepsy. We report two patients with chronic epilepsy and developmental abnormalities of the hippocampus and cortex. We seek to address, in patients with recurrent convulsive seizures over many decades, whether hippocampal malformations necessarily progress to hippocampal sclerosis. Methods: The first patient died at age 76 years and had experienced convulsive seizures for 43 years. The second patient, aged 64 years at death, had experienced convulsive seizures for 49 years. The brains were processed routinely. Immunohistochemistry for dynorphin and neuropeptide Y was performed. Results: The first case exhibited bilateral perisylvian polymicrogyria. Both hippocampi demonstrated abnormal convolution in the CA1 subfield and subiculum. In the second case, periventricular heterotopia was found in the wall of the right lateral ventricle. The right hippocampus was abnormally oriented with excessive convolutions of the pyramidal cell layer between CA1 and the subiculum. In neither patient did the hippocampi exhibit neuronal loss. Furthermore, dynorphin immunohistochemistry revealed no reactivity in the molecular layers, and staining with neuropeptide Y confirmed normal numbers of hilar interneurons. Conclusions: These two cases demonstrate histologically that, even in long-standing epilepsy, malformations of the hippocampus do not necessarily develop into hippocampal sclerosis. [source]


    Abnormal Excitability of Hippocampal CA3 Neurons in Noda Epileptic Rat (NER): Alteration of Seizure with Aging

    EPILEPSIA, Issue 2000
    Ryosuke Hanaya
    Purpose: Noda epileptic rat (NER), a mutant found in thc colony of Crj:Wistar rats, spontaneously shows tonic-clonic convulsions approximately once every 30 hours from 8,16 weeks of age. A long-lasting dcpolarization shift accompanied by repetitivc firings are observed in hippocampal CA3 pyramidal neurons of NER with seizures. Using hippocampal slice preparations of NER, the present electrophysiologi- cal study was performed to elucidate whether this abnormal firing in CA3 neurons developed with age and if abnormality of Ca2+ channel was involved. Methods: Hippocampal slices (40Opm) werc prepared from NER and normal Wistar rats (age; 4,29 weeks). A single rectangular pulse stimulus composed of 0.1-ms duration was delivered to the mossy fibers every 5 seconds though a bipolar electrode placed in the granular cell layer of the dentate gyrus. Intracellular recording was made from the CA3 pyramidal cell using a microelectrode containing 3M KCI intracellular recordings. A Ca2+ spike was elicited by applying a depolarizing pulse (InA, 120ms) in the cell through the recording electrode under a blockadc of Na+ and K+ channels using 1 pM tetrodotoxin and I 0mM tctraethylammonium added to the artificial CSF, respectivcly. Nicardipine (I-IOOnM), a Ca2+ channel blocker, was applicd to the bath. Results: Thirty-seven slices from I9 NER and 6 slices from 4 normal Wishe rats were used. There were no obvious changes in the resting membrane potentials of CA3 neurons between NER and Wistar rats tested. When a single stimulus was delivered to the mossy fibers, a long-lasting depolarization shift accompanied by repetitive firings followed by after-hyperpolarization werc also obtained i n hippocampal CA3 neurons of young NER (4,5 weeks of age) before occurrence of any seizurcs, although the depolarization shift in younger NER was shorter than that in NER aged more than 6 weeks. These abnormal firings werc evokcd in 58% and 30% of all CA3 neurons tested in the younger and mature NER (6,1 5 weeks of age), respectively. Furthermore, abnormal firing was not elicited in NER aged after I6 weeks. Agc-matched Wistar rats showed only single action potentials without any depolarization shift with single mossy fiber stimulation. Bath application of nicardipine (IOnM) inhibited this long-lasting depolarization shift and the accompanying repetitive firing followed by afterhypcrpolarization without affecting the first spike induced by mossy fiber stimulations. Furthermore, nicai-dipine (IOnM) inhibited the Ca2+ spikes elicited by applying a depolarizing pulse in the neurons of NER with seizures, although a higher dose (100nM) did not affect those in Wistar rats. Conclusions: These findings indicate that abnormal excitability of the NER CA3 pyramidal neurons is probably due to abnormality in the Ca2+ channcls. The abnorinal excitability was observed in NER at an age when tonic-clonic convulsions were not detected, suggesting that thc hippocampus may probably scrve as an epileptogenic focus in younger NER and the seizure impulses originating i n this area are transinittcd to the new other seizurc foci in mature NER. [source]


    Status Epilepticus,Induced Neuronal Loss in Humans Without Systemic Complications or Epilepsy

    EPILEPSIA, Issue 8 2000
    Denson G. Fujikawa
    Summary: Purpose: To determine the regional distribution of neuronal damage caused strictly by status epilepticus (SE) without systemic complications, underlying brain pathology, or a history of preexisting epilepsy. Methods: The medical records and electroencephalograms (EEGs) of three deceased patients who developed SE in the hospital were reviewed. Their brains were formalin-fixed, and 17 brain regions were selected, embedded in paraffin, and sectioned. Alternate sections were stained with either hematoxylin and eosin and cresyl violet to determine the extent of neuronal loss and gliosis or glial fibrillary astrocytic protein to confirm the extent of astrocytic proliferation. Results: The three patients died 11 to 27 days after the onset of focal motor SE; none had hypotension, hypoxemia, hypoglycemia, or significant hyperthermia. Two patients had no prior seizures and no underlying brain pathology. The third patient, who had leptomeningeal carcinomatosis, had one seizure 2 months before the onset of SE. The duration of SE was 8.8 hours to 3 days. EEGs showed unilateral temporal lobe sharp-wave discharges in one patient and independent temporal lobe sharp-wave discharges bilaterally in the other two patients. In addition to widespread neuronal loss and reactive gliosis in the hippocampus, amygdala, dorsomedial thalamic nucleus, and Purkinje cell layer of the cerebellum, we report for the first time periamygdaloid (piriform) and entorhinal cortical damage occurring acutely after SE in humans. Conclusions: In the absence of systemic complications or preexisting epilepsy, SE produces neuronal loss in a distribution similar to that from domoic acid-induced SE in humans and from kainic acid- and pilocarpine-induced SE in rats. [source]


    Inactivation of astroglial NF-,B promotes survival of retinal neurons following ischemic injury

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2009
    Galina Dvoriantchikova
    Abstract Reactive astrocytes have been implicated in neuronal loss following ischemic stroke. However, the molecular mechanisms associated with this process are yet to be fully elucidated. In this work, we tested the hypothesis that astroglial NF-,B, a key regulator of inflammatory responses, is a contributor to neuronal death following ischemic injury. We compared neuronal survival in the ganglion cell layer (GCL) after retinal ischemia-reperfusion in wild-type (WT) and in GFAP-I,B,-dn transgenic mice, where the NF-,B classical pathway is suppressed specifically in astrocytes. The GFAP-I,B,-dn mice showed significantly increased survival of neurons in the GCL following ischemic injury as compared with WT littermates. Neuroprotection was associated with significantly reduced expression of pro-inflammatory genes, encoding Tnf-,, Ccl2 (Mcp1), Cxcl10 (IP10), Icam1, Vcam1, several subunits of NADPH oxidase and NO-synthase in the retinas of GFAP-I,B,-dn mice. These data suggest that certain NF-,B-regulated pro-inflammatory and redox-active pathways are central to glial neurotoxicity induced by ischemic injury. The inhibition of these pathways in astrocytes may represent a feasible neuroprotective strategy for retinal ischemia and stroke. [source]


    Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2009
    Franz Marxreiter
    Abstract In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype. Here, we study the regulation of adult neurogenesis in the subventricular zone (SVZ)/OB system in a tetracycline-suppressive (tet-off) transgenic model of synucleinopathies, expressing human mutant A30P alpha-synuclein under the control of the calcium/calmodulin-dependent protein kinase II alpha (CaMK) promoter. In A30P transgenic mice alpha-synuclein was abundant at the site of integration in the glomerular cell layer of the OB. Without changes in proliferation in the SVZ, significantly fewer newly generated neurons were observed in the OB granule cell and glomerular layers of A30P transgenic mice than in controls, most probably due to increased cell death. By tetracycline-dependent abrogation of A30P alpha-synuclein expression, OB neurogenesis and programmed cell death was restored to control levels. Our results indicate that, using A30P conditional (tet-off) mice, A30P alpha-synuclein has a negative impact on olfactory neurogenesis and suppression of A30P alpha-synuclein enhances survival of newly generated neurons. This finding suggests that interfering with alpha-synuclein pathology can rescue newly generated neurons, possibly leading to new targets for therapeutic interventions in synucleinopathies. [source]


    Rhythmic expression of clock genes in the ependymal cell layer of the third ventricle of rodents is independent of melatonin signaling

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
    Shinobu Yasuo
    Abstract Reproductive physiology is regulated by the photoperiod in many mammals. Decoding of the photoperiod involves circadian clock mechanisms, although the molecular basis remains unclear. Recent studies have shown that the ependymal cell layer lining the infundibular recess of the third ventricle (EC) is a key structure for the photoperiodic gonadal response. The EC exhibits daylength-dependent changes in the expression of photoperiodic output genes, including the type 2 deiodinase gene (Dio2,). Here we investigated whether clock genes (Per1 and Bmal1) and the albumin D-binding protein gene (Dbp) are expressed in the EC of Syrian hamsters, and whether their expression differs under long-day and short-day conditions. Expression of all three genes followed a diurnal rhythm; expression of Per1 and Dbp in the EC peaked around lights-off, and expression of Bmal1 peaked in the early light phase. The amplitude of Per1 and Dbp expression was higher in hamsters kept under long-day conditions than in those kept under short-day conditions. Notably, the expression of these genes was not modified by exogenous melatonin within 25 h after injection, whereas Dio2 expression was inhibited 19 h after injection. Targeted melatonin receptor (MT1, MT2, and both MT1 and MT2) disruption in melatonin-proficient C3H mice did not affect the rhythmic expression of Per1 in the EC. These data show the existence of a molecular clock in the rodent EC. In the hamster, this clock responds to long-term changes in the photoperiod, but is independent of acute melatonin signals. In mice, the EC clock is not affected by deletion of melatonin receptors. [source]


    Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
    Patricia R. Jusuf
    Abstract Melanopsin is a photopigment expressed in retinal ganglion cells, which are intrinsically photosensitive and are also involved in retinal circuits arising from rod and cone photoreceptors. This circuitry, however, is poorly understood. Here, we studied the morphology, distribution and synaptic input to melanopsin-containing ganglion cells in a New World monkey, the common marmoset (Callithrix jacchus). The dendrites of melanopsin-containing cells in marmoset stratify either close to the inner nuclear layer (outer stratifying), or close to the ganglion cell layer (inner stratifying). The dendritic fields of outer-stratifying cells tile the retina, with little overlap. However, the dendritic fields of outer-stratifying cells largely overlap with the dendritic fields of inner-stratifying cells. Thus, inner-stratifying and outer-stratifying cells may form functionally independent populations. The synaptic input to melanopsin-containing cells was determined using synaptic markers (antibodies to C-terminal binding protein 2, CtBP2, for presumed bipolar synapses, and antibodies to gephyrin for presumed amacrine synapses). Both outer-stratifying and inner-stratifying cells show colocalized immunoreactive puncta across their entire dendritic tree for both markers. The density of CtBP2 puncta on inner dendrites was about 50% higher than that on outer dendrites. The density of gephyrin puncta was comparable for outer and inner dendrites but higher than the density of CtBP2 puncta. The inner-stratifying cells may receive their input from a type of diffuse bipolar cell (DB6). Our results are consistent with the idea that both outer and inner melanopsin cells receive bipolar and amacrine input across their dendritic tree. [source]


    Synapse-specific localization of vesicular glutamate transporters in the rat olfactory bulb

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007
    Marie-Madeleine Gabellec
    Abstract Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have so far been identified, with distinct expression patterns in the adult brain. Here, we investigated the spatial distribution of the three VGLUTs in the rat olfactory bulb, a brain region containing a variety of glutamate synapses, both axodendritic and dendrodendritic. Using multilabelling confocal microscopy and electron microscopic immunocytochemistry, we showed that each VGLUT isoform has a highly selective localization in olfactory bulb synapses. VGLUT1 is present at dendrodendritic synapses established by the output neurones (mitral and tufted cells) with bulbar interneurones in the glomerular layer and external plexiform layer, as well as in axonal synapses of the granule cell layer. By contrast, VGLUT2 is strongly expressed in axon terminals of olfactory sensory neurones, which establish synapses with second-order neurones in the glomerular neuropil. VGLUT2 is also found in the outer part of the external plexiform layer and in the granule cell layer but colocalizes only partially with VGLUT1. Finally, we showed that VGLUT3 is exclusively located in the glomerular neuropil, where it colocalizes extensively with the vesicular inhibitory amino acid transporter vesicular GABA transporter, suggesting that it is associated with a subset of inhibitory synapses. Together, these observations extend previous findings on VGLUT distribution in the forebrain, and suggest that each VGLUT subtype has a specific function in the distinct features of axodendritic and dendrodendritic synapses that characterize the olfactory bulb circuit. [source]


    Dark-rearing-induced reduction of GABA and GAD and prevention of the effect by BDNF in the mouse retina

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2006
    Eun-Jin Lee
    Abstract Gamma-aminobutyric acid (GABA) is an important retinal neurotransmitter. We studied the expression of GABA, glutamate decarboxylase 65 (GAD65) and GAD67 by immunocytochemistry and Western blot, in the retinas of control and dark-reared C57BL/6J black mice. This study asked three questions. First, is visual input necessary for the normal expression of GABA, GAD65 and GAD67? Second, can the retina recover from the effects of dark-rearing if returned to a normal light,dark cycle? Third, does BDNF prevent the influence of dark-rearing on the expression of GABA and GAD? At postnatal day 10 (P10), before eye opening, GABA immunoreactivity was present in the ganglion cell layer (GCL), in the innermost rows of the inner nuclear layer (INL) and throughout the inner plexiform layer (IPL) of control and dark-reared retinas. In P30 control retinas, GABA immunoreactivity showed similar patterns to those at P10. However, in P30 dark-reared retinas, the density of GABA-immunoreactive cells was lower in both the INL and GCL than in control retinas. In addition, visual deprivation retarded GABA immunoreactivity in the IPL. Western blot analysis showed corresponding differences in the levels of GAD65 but not of GAD67 expression between control and dark-rearing conditions. In our study, dark-rearing effects were reversed when the mice were put in normal cyclic light,dark conditions for 2 weeks. Moreover, dark-reared retinas treated with BDNF showed normal expression of both GABA and GAD65. Our data indicate that normal expression of GABA and GAD65 is dependent on visual input. Furthermore, the data suggest that BDNF controls this dependence. [source]


    The SDF-1/CXCR4 pathway and the development of the cerebellar system

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2005
    Tim O. Vilz
    Abstract Mice deficient for the chemokine receptor CXCR4 show premature translocation of granule cell neuroblasts from their germinal zone into the nascent cerebellum [Y.-R. Zuo et al. (1998)Nature, 393, 595,599]. Here, we used CXCR4-null mice to analyse the early development of cerebellar cortical inhibitory interneurons and pontine neurons which, in the adult, are synaptically integrated with granule cells. Cortical inhibitory interneuronal precursors normally invade the cerebellar anlage of CXCR4-deficient mice, but their dispersal is impeded by dislocated foci of proliferating granule cells, from which they are excluded. This is reminiscent of the strict exclusion of inhibitory interneuronal precursors from the superficial external granule cell layer. As inhibitory interneuronal precursors readily mingle with post-mitotic granule cells both in wild-type and CXCR4-null mice, these findings indicate that the developmentally regulated interactions between granule and inhibitory interneuronal precursors are independent of SDF-1/CXCR4 signalling. In contrast, the transit of pontine neurons from the rhombic lip through the anterior extramural stream to the basilar pons is disrupted in CXCR4-deficient animals. Migrating pontine neurons express CXCR4, and in CXCR4-null animals these cells are found displaced deep into the brainstem. Consequently, nascent pontine nuclei in CXCR4-deficient animals are hypoplastic. Moreover, they fail to express plexin D1, suggesting that SDF-1/CXCR4 signalling may also impinge on axon guidance critical to the orderly formation of granule cell mossy fibre afferents. [source]


    Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2004
    Maki Kamada
    Abstract Organotypic slice culture preserves the morphological and physiological features of the hippocampus of live animals for a certain time. The hippocampus is one of exceptional regions where neurons are generated intrinsically and spontaneously throughout postnatal life. We investigated the possibility that neurons are generated continuously at the dentate granule cell layer (GCL) in slice culture of the rat hippocampus. Using 5-bromodeoxyuridine (BrdU) labelling and retrovirus vector transduction methods, the phenotypes of the newly generated cells were identified immunohistochemically. At 4 weeks after BrdU exposure, BrdU-labelled cells were found in the GCL and were immunoreactive with a neuronal marker, anti-NeuN. There were fibrils immunoreactive with anti-glial fibrillary acidic protein (GFAP), an astrocyte marker, in the layer covering the GCL and occasionally encapsulated BrdU-labelled nuclei. When the newly divided cells were marked with the enhanced green fluorescent protein (EGFP) using a retrovirus vector, these cells had proliferative abilities throughout the following 4-week cultivation period. Four weeks after the inoculation, the EGFP-expressing cells consisted of various phenotypes of both early and late stages of differentiation; some were NeuN-positive cells with appearances of neurons in the GCL and some were immunoreactive with anti-Tuj1, a marker of immature neurons. Some EGFP-expressing cells were immunoreactive with anti-GFAP or anti-nestin, a marker of neural progenitors. The present study suggests that slice cultures intrinsically retain spontaneous neurogenic abilities for their cultivation period. The combination of slice culture and retrovirus transduction methods enable the newly divided cells to be followed up for a long period. [source]


    7-Hydroxylated epiandrosterone (7-OH-EPIA) reduces ischaemia-induced neuronal damage both in vivo and in vitro

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003
    Ashley K. Pringle
    Abstract Recent evidence suggests that steroids such as oestradiol reduce ischaemia-induced neurodegeneration in both in vitro and in vivo models. A cytochrome P450 enzyme termed cyp7b that 7-hydroxylates many steroids is expressed at high levels in brain, although the role of 7-hydroxylated steroids is unknown. We have tested the hypothesis that the steroid-mediated neuroprotection is dependent on the formation of 7-hydroxy metabolites. Organotypic hippocampal slice cultures were prepared from Wistar rat pups and maintained in vitro for 14 days. Cultures were then exposed to 3 h hypoxia and neuronal damage assessed 24 h later using propidium iodide fluorescence as a marker of cell damage. Neurodegeneration occurred primarily in the CA1 pyramidal cell layer. The steroids oestradiol, dehydroepiandrosterone and epiandrosterone (EPIA) were devoid of neuroprotective efficacy when present at 100 nm pre-, during and post-hypoxia. The 7-hydroxy metabolites of EPIA, 7,-OH-EPIA and 7,-OH-EPIA significantly reduced neurotoxicity at 100 nm and 10 nm. 7,-OH-EPIA was also neuroprotective in two in vivo rat models of cerebral ischaemia: 0.1 mg/kg 7,-OH-EPIA significantly reduced hippocampal cell loss in a model of global forebrain ischaemia, whereas 0.03 mg/kg was neuroprotective in a model of focal ischaemia even when administration was delayed until 6 h after the onset of ischaemia. Taken together, these data demonstrate that 7-hydroxylation of steroids confers neuroprotective efficacy, and that 7,-OH-epiandrosterone represents a novel class of neuroprotective compounds with potential for use in acute neurodegenerative diseases. [source]


    Production of new cells in the rat dentate gyrus over the lifespan: relation to cognitive decline

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003
    J. L. Bizon
    Abstract The identification of neurogenesis in the dentate gyrus of adult mammals has sparked much interest in a functional role for these new neurons in hippocampal-dependent cognition. The current investigation used a model of age-related cognitive decline in rodents to study the relationship between changes in markers of neurogenesis and hippocampal function. New cell production in the granule cell layer was progressively reduced across the lifespan of male Long Evans rats, with a 40% reduction at middle age (13 months) and a reduction in excess of 80% in advanced age (25 months), compared with young mature adults (7 months). These effects of aging were not, however, predictive of cognitive status. In particular, the pronounced decrease in new cell production during aging did not distinguish among rats that varied over a wide range of cognitive abilities. [source]


    Modulation of spontaneous and evoked EPSCs and IPSCs in optic lobe neurons of cuttlefish Sepia officinalis by the neuropeptide FMRF-amide

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003
    Abdesslam Chrachri
    Abstract The effects of the neuropeptide FMRFa on spontaneous excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs), as well as on evoked EPSCs and IPSCs, in two types of neurons within the central optic lobe of cuttlefish were examined using the whole-cell voltage-clamp technique. FMRFa (1,10 µm) did not affect cell membrane resting potentials, but reversibly reduced both the frequency and amplitude of sEPSCs in neurons within the medulla region of the optic lobe while increasing the frequency and amplitude of their sIPSCs. For centrifugal neurons in the inner granule cell layer of the optic lobe, FMRFa (1,10 µm) decreased both the frequency and amplitude of sEPSCs. In the presence of tetrodotoxin (0.5 µm), neither the interevent interval, nor amplitude distributions of the miniature EPSCs or the miniature IPSCs, were affected by FMRFa, implying a presynaptic action of FMRFa on the optic lobe neurons. Bath application of the neuropeptide also abolished or reduced in amplitude the evoked EPSCs and increased the amplitude of evoked IPSCs in optic lobe neurons, showing that FMRFa induced similar effects on evoked as on spontaneous postsynaptic currents. These results demonstrate the complex range of modulatory effects FMRFa can have within central nervous system circuits. [source]


    Postnatal maturation of Na+, K+, 2Cl, cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002
    Serge Marty
    Abstract GABA, a major inhibitory neurotransmitter, depolarizes hippocampal pyramidal neurons during the first postnatal week. These depolarizations result from an efflux of Cl, through GABAA -gated anion channels. The outward Cl, gradient that provides the driving force for Cl, efflux might be generated and maintained by the Na+, K+, 2Cl, cotransporter (NKCC) that keeps intracellular Cl, concentration above electrochemical equilibrium. The developmental pattern of expression of the cotransporter in the hippocampus is not known. We studied the postnatal distribution pattern of NKCC in the hippocampus using a monoclonal antibody (T4) against a conserved epitope in the C-terminus of the cotransporter molecule. We also examined the temporal relationships between the developmental pattern of NKCC expression and the formation of perisomatic GABAergic synapses. This study was aimed at determining, with antivesicular inhibitory amino acid transporter (VIAAT) antibodies, whether perisomatic GABAergic synapses are formed preferentially at the time when GABA is depolarizing. During the first postnatal week, NKCC immunolabelling was restricted to cell bodies in the pyramidal cell layer and in the strata oriens and radiatum. In contrast, at postnatal day 21 (P21) and in adult animals little or no labelling occurred in cell bodies; instead, a prominent dendritic labelling appeared in both pyramidal and nonpyramidal neurons. The ultrastructural immunogold study in P21 rat hippocampi corroborated the light-microscopy results. In addition, this study revealed that a portion of the silver-intensified colloidal gold particles were located on neuronal plasmalemma, as expected for a functional cotransporter. The formation of inhibitory synapses on perikarya of the pyramidal cell layer was a late process. The density of VIAAT-immunoreactive puncta in the stratum pyramidale at P21 reached four times the P7 value in CA3, and six times the P7 value in CA1. Electron microscopy revealed that the number of synapses per neuronal perikaryal profile in the stratum pyramidale of the CA3 area at P21 was three times higher than at P7, even if a concomitant 20% increase in the area of these neuronal perikaryal profiles occurred. It is concluded that, in hippocampal pyramidal cells, there is a developmental shift in the NKCC localization from a predominantly somatic to a predominantly dendritic location. The presence of NKCC during the first postnatal week is consistent with the hypothesis that this transporter might be involved in the depolarizing effects of GABA. The depolarizing effects of GABA may not be required for the establishment of the majority of GABAergic synapses in the stratum pyramidale, because their number increases after the first postnatal week, when GABA action becomes hyperpolarizing. [source]


    Hippocampal granule neuron production and population size are regulated by levels of bFGF

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2002
    Yinghong Cheng
    Abstract Numerous studies of the proliferative effects of basic fibroblast growth factor (bFGF) in culture, including neonatal and adult hippocampal precursors, suggest that the factor plays a ubiquitous and life-long role in neurogenesis. In contrast, in vivo, bFGF is devoid of effects on neurons in mature hippocampus, raising the possibility that bFGF exhibits developmental stage-specific activity in the complex animal environment. To define neurogenetic effects in the newborn, a single subcutaneous injection of bFGF (20 ng/gm) was administered to postnatal day 1 (P1) rats, and hippocampal DNA content was quantified: bFGF elicited an increase in total DNA throughout adulthood, by 48% at P4, 25% at P22, and 17% at P180, suggesting that bFGF increases hippocampal cell number. To define mechanisms, bromodeoxyuridine (BrdU) was injected at P1 and mitotically labelled cells were assessed at P22: there was a twofold increase in BrdU-positive cells in the dentate granule cell layer (GCL), indicating that bFGF enhanced the generation of neurons, or neuronogenesis, from a cohort of precursors. Moreover, enhanced mitosis and survival led to a 33% increase in absolute GCL neuron number, suggesting that neuron production depends on environmental levels of bFGF. To evaluate this possibility, bFGF-knockout mice were analyzed: hippocampal DNA content was decreased at all ages examined (P3, ,42%; P21, ,28%; P360, ,18%), and total GCL neuron and glial fibrillary acidic protein (GFAP)-positive cell number were decreased by 30%, indicating that bFGF is necessary for normal hippocampal neurogenesis. We conclude that environmental levels of bFGF regulate neonatal hippocampal neurogenesis. As adult hippocampal neuronogenesis was unresponsive to bFGF manipulation in our previous study [Wagner, J.P., Black, I.B. & DiCicco-Bloom, E. (1999) J. Neurosci., 19, 6006], these observations suggest distinct, stage-specific roles of bFGF in the dentate gyrus granule cell lineage. [source]


    N -methyl- d -aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001
    Andreas Arvidsson
    Abstract Neurogenesis in the adult rat dentate gyrus was studied following focal ischemic insults produced by middle cerebral artery occlusion (MCAO). Animals were subjected to either 30 min of MCAO, which causes damage confined to the striatum, or 2 h of MCAO, which leads to both striatal and cortical infarction. When compared to sham-operated rats, MCAO-rats showed a marked increase of the number of cells double-labelled for 5-bromo-2,-deoxyuridine-5,-monophosphate (BrdU; injected during 4,6 days postischemia) and neuronal-specific antigen (NeuN; a marker of postmitotic neurons) in the ipsilateral dentate granule cell layer and subgranular zone at 5 weeks following the 2 h insult. Only a modest and variable increase of BrdU-labelled cells was found after 30 min of MCAO. The enhanced neurogenesis was not dependent on cell death in the hippocampus, and its magnitude was not correlated to the degree of cortical damage. Systemic administration of the N -methyl- d -aspartate (NMDA) receptor blocker dizocilpine maleate (MK-801) completely suppressed the elevated neurogenesis following 2 h of MCAO. Our findings indicate that stroke leads to increased neurogenesis in the adult rat dentate gyrus through glutamatergic mechanisms acting on NMDA receptors. This modulatory effect may be mediated through changes in the levels of several growth factors, which occur after stroke, and could influence various regulatory steps of neurogenesis. [source]


    Apoptosis in oral lichen planus

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 5 2001
    Evelyn Neppelberg
    Apoptotic cell death may be a contributory cause of basal cell destruction in oral lichen planus (OLP). Therefore, the purpose of this study was to investigate the rate of apoptosis in OLP and the expression of two proteins (FasR and FasL) regulating this process. Biopsies from 18 patients with histologically diagnosed OLP were investigated, with comparison to normal oral mucosa of healthy persons. For visualisation of DNA fragmentation, the TUNEL method was used. In order to characterise the infiltrating cell population (CD3, CD4, CD8) and expression of FasR and FasL, we used an immunohistochemical technique. The results showed that T cells dominated in the subepithelial cell infiltrate. Within the epithelium the apoptotic cells were confined to the basal cell layer, and more apoptotic cells were seen in areas with basal cell degeneration and atrophic epithelium. There was a prominent expression of FasR/FasL in OLP, with a rather uniform distribution throughout the inflammatory cell infiltrate. In the epithelium, the FasR/FasL expression was more abundant in the basal cell area compared to the suprabasal cell layer. In conclusion, apoptosis within the epithelium is significantly increased in situ in OLP compared to normal oral mucosa, and seems to be related to the epithelial thickness. [source]


    Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals

    EVOLUTION AND DEVELOPMENT, Issue 6 2008
    Hitoshi Niwa
    SUMMARY Uterine nourishment of embryos by the placenta is a key feature of mammals. Although a variety of placenta types exist, they are all derived from the trophectoderm (TE) cell layer of the developing embryo. Egg-laying mammals (platypus and echidnas) are distinguished by a very short intrauterine embryo development, in which a simple placenta forms from TE-like cells. The Pou5f1 gene encodes a class V POU family transcription factor Oct3/4. In mice, Oct3/4 together with the highly conserved caudal -related homeobox transcription factor Cdx2, determines TE fate in pre-implantation development. In contrast to Cdx2, Pou5f1 has only been identified in eutherian mammals and marsupials, whereas, in other vertebrates, pou2 is considered to be the Pou5f1 ortholog. Here, we show that platypus and opossum genomes contain a Pou5f1 and pou2 homolog, pou2-related, indicating that these two genes are paralogues and arose by gene duplication in early mammalian evolution. In a complementation assay, we found that platypus or human Pou5f1, but not opossum or zebrafish pou2, restores self-renewal in Pou5f1 -null mouse ES cells, showing that platypus possess a fully functional Pou5f1 gene. Interestingly, we discovered that parts of one of the conserved regions (CR4) is missing from the platypus Pou5f1 promoter, suggesting that the autoregulation and reciprocal inhibition between Pou5f1 and Cdx2 evolved after the divergence of monotremes and may be linked to the development of more elaborate placental types in marsupial and eutherian mammals. [source]


    Identification of tudor repeat associator with PCTAIRE 2 (Trap)

    FEBS JOURNAL, Issue 7 2000
    A novel protein that interacts with the N-terminal domain of PCTAIRE 2 in rat brain
    PCTAIRE 2 is a Cdc2-related kinase that is predominantly expressed in the terminally differentiated neuron. To elucidate the function of PCTAIRE 2, proteins that associate with PCTAIRE 2 were screened by the yeast two-hybrid system. A positive clone was found to encode a novel protein that could bind to PCTAIRE 2 in vitro as well as in vivo, and was designated as Trap (tudor repeat associator with PCTAIRE 2). The overall structure of Trap shows no significant homology to any proteins, but contains five repeated domains (the tudor-like domain), conserved in Drosophila tudor protein. Trap associates with the N-terminal domain of PCTAIRE 2 through its C-terminal domain, which contains two tudor-like domains. PCTAIRE 1, but not PCTAIRE 3, can also associate with Trap. Trap is predominantly expressed in brain and testis, and gradually increases during brain development throughout life, consistent with the expression pattern of PCTAIRE 2. Immunoreactivities for PCTAIRE 2 and Trap were colocalized to the mitochondria in COS 7 cells. Immunohistochemical analyses showed that PCTAIRE 2 and Trap were distributed in the same cell layer of the cerebral cortex and cerebellum. These findings suggest that Trap is a physiological partner of PCTAIRE 2 in terminally differentiated neurons. [source]


    Diamond Transistor Array for Extracellular Recording From Electrogenic Cells

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2009
    Markus Dankerl
    Abstract The transduction of electric signals from cells to electronic devices is mandatory for medical applications such as neuroprostheses and fundamental research on communication in neuronal networks. Here, the use of diamond with its advantages for biological applications as a new material for biohybrid devices for the detection of cell signals is investigated. Using the surface conductivity of hydrogen-terminated single-crystalline diamond substrates, arrays of solution-gate field-effect transistors were fabricated. The characterization of the transistors reveals a good stability in electrolyte solutions for at least 7 days. On these devices, cardiomyocyte-like HL-1 cells as well as human embryonic kidney cells (HEK293), which were stably transfected with potassium channels, are cultured. Both types of cells show healthy growth and good adhesion to the substrate. The diamond transistors are used to detect electrical signals from both types of cells by recording the extracellular potential. For the HL-1 cells, the shape of action potentials can be resolved and the propagation of the signal across the cell layer is visible. Potassium currents of HEK293 cells are activated with the patch-clamp technique in voltage-clamp mode and simultaneously measured with the field-effect transistors. The ion sensitivity of the diamond surface enables the detection of released potassium ions accumulated in the cleft between transistor and cell. [source]


    Requirement of Runx1/AML1/PEBP2,B for the generation of haematopoietic cells from endothelial cells

    GENES TO CELLS, Issue 1 2001
    Tomomasa Yokomizo
    Recent studies revealing that endothelial cells derived from E8.5-E10.5 mouse embryos give rise to haematopoietic cells appear to correspond to previous histological observations that haematopoietic cell clusters are attached to the ventral aspect of dorsal aorta in such a way as if they were budding from the endothelial cell layer. Gene disruption studies have revealed that Runx1/AML1 is required for definitive haematopoiesis but not for primitive haematopoiesis, but the precise stage of gene function is not yet known. We found that mice deficient in Runx1/AML1 (an , subunit of the transcription factor PEBP2/CBF) lack c-Kit+ haematopoietic cell clusters in the dorsal aorta, omphalomesenteric and umbilical arteries, as well as yolk sac vessels. Moreover, endothelial cells sorted from the embryo proper and the yolk sac of AML1,/, embryos are unable to differentiate into haematopoietic cells on OP9 stromal cells, whereas colonies of AML1,/, endothelial cells can be formed in culture. These results strongly suggest that the emergence of haematopoietic cells from endothelial cells represents a major pathway of definitive haematopoiesis and is an event that also occurs in the yolk sac in vivo, as suggested by earlier in vitro experiments. [source]