Cells Express (cell + express)

Distribution by Scientific Domains


Selected Abstracts


Cell proliferation in the Rana catesbeiana auditory medulla over metamorphic development

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2006
Judith A. Chapman
Abstract During metamorphic development, bullfrogs (Rana catesbeiana) undergo substantial morphological, anatomical, and physiological changes as the animals prepare for the transition from a fully-aquatic to a semi-terrestrial existence. Using BrdU incorporation and immunohistochemistry, we quantify changes in cell proliferation in two key auditory brainstem nuclei, the dorsolateral nucleus and the superior olivary nucleus, over the course of larval and early postmetamorphic development. From hatchling through early larval stages, numbers of proliferating cells increase in both nuclei, paralleling the overall increase in total numbers of cells available for labeling. Numbers of proliferating cells in the superior olivary nucleus decrease during the late larval and deaf periods, and significantly increase during metamorphic climax. Proliferating cells in the dorsolateral nucleus increase in number from hatchling to late larval stages, decrease during the deaf period, and increase during climax. In both nuclei, numbers of proliferating cells decrease during the postmetamorphic froglet stage, despite increases in the number of cells available for label. Newly generated cells express either glial- or neural-specific phenotypes beginning between 1 week and 1 month post-BrdU injection, respectively, while some new cells express ,-aminobutyric acid within 2 days of mitosis. Our data show that these auditory nuclei dramatically up-regulate mitosis immediately prior to establishment of a transduction system based on atmospheric hearing. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source]


The role of Fas ligand as an effector molecule in corneal graft rejection

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2005
Patrick
Abstract Previous studies have shown that the expression of Fas ligand (FasL; CD95L) by donor corneas is critical to their survival when placed on allogeneic recipients. Since there have been reports that the cornea expresses Fas, we tested the idea that FasL on lymphoid cells could be an effector molecule during rejection episodes. When FasL defective BALB/c- gld mice were engrafted with allogeneic corneas, significantly more of these corneas were accepted than by normal BALB/c mice. However, this was not due to impaired FasL-mediated effector function in these mice as the allogeneic corneas did not express detectable Fas by Western blot or RT-PCR analysis. Furthermore, donor corneas without Fas were given no survival advantage, but were rejected similar to wild-type donor allogeneic corneas. Examination of the T cell compartment in gld mice revealed that these cells express higher levels of Fas and are more susceptible to Fas-mediated death than wild-type cells. These results indicate that FasL is not an effector molecule in corneal graft rejection and that gld mice show reduced graft rejection due to greater susceptibility of their T cells to Fas-mediated apoptosis. [source]


Identification of marker genes distinguishing human periodontal ligament cells from human mesenchymal stem cells and human gingival fibroblasts

JOURNAL OF PERIODONTAL RESEARCH, Issue 3 2007
T. Fujita
Background and Objective:, Molecular gene markers, which can distinguish human bone marrow mesenchymal stem cells from human fibroblasts, have recently been reported. Messenger RNA levels of tissue factor pathway inhibitor-2, major histocompatibility complex-DR-,, major histocompatibility complex-DR-,, and neuroserpin are higher in human bone marrow mesenchymal stem cells than in human fibroblasts. However, human bone marrow mesenchymal stem cells express less apolipoprotein D mRNA than human fibroblasts. Periodontal ligament cells are a heterogeneous cell population including fibroblasts, mesenchymal stem cells, and progenitor cells of osteoblasts or cementoblasts. The use of molecular markers that distinguish human bone marrow mesenchymal stem cells from human fibroblasts may provide insight into the characteristics of human periodontal ligament cells. In this study, we compared the molecular markers of human periodontal ligament cells with those of human bone marrow mesenchymal stem cells and human gingival fibroblasts. Material and Methods:, The mRNA expression of the molecular gene markers was analyzed using real-time polymerase chain reaction. Statistical differences were determined with the two-sided Mann,Whitney U -test. Results:, Messenger RNA levels of major histocompatibility complex-DR-, and major histocompatibility complex-DR-, were lower and higher, respectively, in human periodontal ligament cells than in human bone marrow mesenchymal stem cells or human gingival fibroblasts. Human periodontal ligament cells showed the lowest apolipoprotein D mRNA levels among the three types of cells. Conclusion:, Human periodontal ligament cells may be distinguished from human bone marrow mesenchymal stem cells and human gingival fibroblasts by the genes for apolipoprotein D, major histocompatibility complex-DR-,, and major histocompatibility complex-DR-,. [source]


Phenotypic comparison of periodontal ligament cells in vivo and in vitro

JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2001
P. Lekic
The mammalian periodontal ligament contains heterogeneous populations of connective tissue cells, the precise function of which is poorly understood. Despite close proximity to bone and the application of high amplitude physical forces, cells in the periodontal ligament (PL) are capable of expressing regulatory factors that maintain PL width during adult life. The study of PL homeostasis and PL cell differentiation requires culture and phenotypic methods for precise characterization of PL cell populations, in particular those cells with an inherently osteogenic program. Currently it is unknown if cells cultured from the PL are phenotypically similar to the parental cells that are present in the tissues. We have compared the phenotype of cells in vivo with cells derived from the PL and expanded in vitro to assess the general validity of in vitro models for the study of phenotypic regulation in vivo. Rat PL cells were isolated by either scraping the root of the extracted first mandibular molars (Group A), or by scraping the alveolar socket following extraction of first mandibular molars (Group B), or by obtaining a mixture of cells after disaggregating a block of tissue consisting of first mandibular molar, PL and the surrounding alveolar bone (Group C). Cultured cells at confluence were fixed and immunostained for ,-smooth muscle actin (,-SMA), osteopontin (OPN), alkaline phosphatase (AP), or bone sialoprotein (BSP). For in vivo assessments, frontal sections of rat first mandibular molar were immunostained for ,-SMA, OPN, AP and BSP. We examined osteogenic differentiation of cultured PL cell cultures by bone nodule-forming assays. In vivo and at all examined sites, >68% of PL cells were immunostained for AP; ,50% and ,51% for OPN and ,-SMA (p=0.3), respectively, while only ,8% were positively stained for BSP (p<0.01). Analysis of cultured PL cells in Groups A, B and C showed 54%, 53% and 56% positive staining for ,-SMA respectively; 51%, 56%, 54% for OPN; 66%, 70%, 69% for AP and 2.2%, 1.4% and 2.8% for BSP. The mean percentage of PL cells in situ stained for the different markers was similar to that of cultured PL cells (Group A,Group B,Group C in situ for p>0.2) except for BSP which was 3 to 4 fold higher in vivo(p<0.01). PL cell cultures treated with dexamethasone showed mineralized tissue formation for all groups (A, B, C), but no mineralized tissue formation was detected in the absence of dexamethasone. As PL cells express quantitatively similar phenotypes in vitro and in vivo, we conclude that the in vitro models used here for assessment of PL cell differentiation appear to be appropriate and are independent of the cell sampling method. Further, dexamethasone-dependent progenitors are present both on the root and bone-related sides of the PL. [source]


Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2005
Yaxian Ding
NAD(P)H oxidase contributes to the pathogenesis of cancer and cardiovascular diseases such as hypertension, atherosclerosis, restenosis, cardiac hypertrophy and heart failure. Plumbagin, a plant-derived naphthoquinone, has been shown to exert anticarcinogenic and anti-atherosclerosis effects in animals. However, the molecular mechanisms underlying these effects remain unknown. It is possible that the beneficial effect of plumbagin is due to the inhibition of NAD(P)H oxidase. Human embryonic kidney 293 (HEK293) and brain tumour LN229 cells express mainly Nox-4, a renal NAD(P)H oxidase. We have examined the effect of plumbagin on Nox-4 activity in HEK293 and LN229 cells using lucigenin-dependent chemiluminescence assay. Plumbagin inhibited the activity of Nox-4 in a time- and dose-dependent manner in HEK293 and LN229 cells. Production of superoxide in HEK293 cells was inhibited by diphenyleneiodonium (DPI), a NAD(P)H oxidase inhibitor. The superoxide production in HEK293 cells was NADPH- and NADH-dependent indicating that the superoxide was generated by a NAD(P)H oxidase in HEK293 cells, but not by the redox-cycling of lucigenin. Furthermore, plumbagin inhibited the superoxide production in Nox-4 transfected COS-7 cells. These results indicated that plumbagin directly interacted with Nox-4 and inhibited its activity. [source]


Dominant IL-10 and TGF-, mRNA Expression in ,,T Cells of Human Early Pregnancy Decidua Suggests Immunoregulatory Potential

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2002
OLGA NAGAEVA
PROBLEM:,To examine the cytokine gene expression in ,,T-cells from human early pregnancy decidua. METHOD OF STUDY:,The cytokine messenger RNA (mRNA) expression in isolated decidual T-cell receptor (TCR),,+/CD56+ and TCR,, single positive cells was investigated with a panel of cytokine primers and probes selected to distinguish between T helper (Th)1, Th2, Th3 and regulatory T-cells (Tr1) type of immune response using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS:,TCR,,+/CD56+ cells express almost exclusively the immunosuppressive cytokines interleukin-10 (IL-10) and transforming growth factor (TGF)-,. The TCR,, single positive cells enhance their transcription of IL-10 and TGF-,, compared with the TCR,,+/CD56+ cells and additionally express mRNA for IL-1, and IL-6. CONCLUSIONS:,The present findings suggest that ,,T cells in normal pregnancy create a cytokine milieu promoting immunotolerance to the fetus. We hypothesize that through the production of the immunosuppressive cytokines IL-10 and/or TGF-, the ,,T cells could function directly as regulatory T cells or induce the differentiation of Th0 TCR,,+ cells into regulatory/suppresser cells. [source]


111Indium-labelled human gut-derived T cells from healthy subjects with strong in vitro adhesion to MAdCAM-1 show no detectable homing to the gut in vivo

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2004
J. KELSEN
SUMMARY Integrin ,4,,7 is the principal gut-homing receptor, and it is assumed that expression of this specific integrin directs lymphocytes to the gut in vivo. Adoptive cellular immunotherapy against inflammatory bowel disease (IBD) may depend on the expression of integrin ,4,,7 to accomplish local delivery of intravenously injected regulatory T cells in inflamed gut mucosa. The present study aimed to investigate whether in vitro expanded human T cells from the colonic mucosa maintain integrin expression, show in vitro adhesion and retain in vivo gut-homing properties during cultivation. Whole colonic biopsies from healthy subjects were cultured in the presence of interleukin-2 (IL-2) and IL-4. The integrin expression of the cultured T cells was determined by flow cytometry and in vitro adhesion was assessed in a mucosal addressin cell adhesion molecule 1 (MAdCAM-1) adhesion assay. We studied the homing pattern after autologous infusion of 3 × 108 111Indium (111In)-labelled T cells in five healthy subjects using scintigraphic imaging. The cultured CD4+CD45RO+ gut-derived T cells express higher levels of integrin ,4,,7 than peripheral blood lymphocytes (PBLs) and show strong adhesion to MAdCAM-1 in vitro, even after 111In-labelling. Scintigraphic imaging, however, showed no gut-homing in vivo. After prolonged transit through the lungs, the T cells migrated preferentially to the spleen, liver and bone marrow. In conclusion, it is feasible to infuse autologous T cells cultured from the gut mucosa, which may be of interest in adoptive immunotherapy. Despite high expression of the gut-homing integrin ,4,,7 and adhesion to MAdCAM-1 in vitro, evaluation by 111In-scintigraphy demonstrated no gut-homing in healthy individuals. [source]