Cell Distribution (cell + distribution)

Distribution by Scientific Domains

Terms modified by Cell Distribution

  • cell distribution width

  • Selected Abstracts


    Direct versus Indirect Allorecognition: Visualization of Dendritic Cell Distribution and Interactions During Rejection and Tolerization

    AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2006
    J. C. Ochando
    Interactions of donor and recipient dendritic cells (DCs) with CD4+ T cells determine the alloantigenic response in organ transplantation, where recipient T cells respond either directly to donor MHC, or indirectly to processed donor MHC allopeptides in the context of recipient MHC molecules. The present study evaluates donor and recipient alloantigen-presenting DC trafficking and their interactions with CD4+ T cells in the lymph nodes (LNs) and the spleen under tolerogenic treatment with anti-CD2 plus anti-CD3 mAb compared with untreated rejecting conditions. CX3CR1GFP BALB/c (I-Ad) donor hearts were transplanted into C57BL/6 (I-Ab) mice and quantification of donor DC direct (GFP+ or I-Ad+) and recipient DC indirect (YAe+) trafficking and interactions with host CD4+ T cells was performed by fluorescent microscopy. Our data indicate that although both direct and indirect interactions between CD4+ T cells and donor and recipient DCs occur shortly after engraftment, only indirect presentation persists in the LN, but not the spleen, of tolerized recipients. These data suggest that distinct anatomic lymphoid compartments play a critical role in peripheral tolerance induction and maintenance, and persistent indirect presentation to CD4+ T cells within the LNs is an important process during tolerization. [source]


    Fluid Mechanics, Cell Distribution, and Environment in Cell Cube Bioreactors

    BIOTECHNOLOGY PROGRESS, Issue 1 2003
    John G. Auni
    Cultivation of MRC-5 cells and attenuated hepatitis A virus (HAV) for the production of VAQTA, an inactivated HAV vaccine ( 1), is performed in the Cell Cube reactor, a laminar flow fixed-bed bioreactor with an unusual diamond-shaped, diverging-converging flow geometry. These disposable bioreactors have found some popularity for the production of cells and gene therapy vectors at intermediate scales of operation ( 2, 3). Early testing of the Cell Cube revealed that the fluid mechanical environment played a significant role in nonuniform cell distribution patterns generated during the cell growth phase. Specifically, the reactor geometry and manufacturing artifacts, in combination with certain inoculum practices and circulation flow rates, can create cell growth behavior that is not simply explained. Via experimentation and computational fluid dynamics simulations we can account for practically all of the observed cell growth behavior, which appears to be due to a complex mixture of flow distribution, particle deposition under gravity, fluid shear, and possibly nutritional microenvironment. [source]


    Cell distribution of stress fibres in response to the geometry of the adhesive environment

    CYTOSKELETON, Issue 6 2006
    Manuel Théry
    Abstract Cells display a large variety of shapes when plated in classical culture conditions despite their belonging to a common cell type. These shapes are transitory, since cells permanently disassemble and reassemble their cytoskeleton while moving. Adhesive micropatterns are commonly used to confine cell shape within a given geometry. In addition the micropattern can be designed so as to impose cells to spread upon adhesive and nonadhesive areas. Modulation of the pattern geometry allows the analysis of the mechanisms governing the determination of cell shape in response to external adhesive conditions. In this study, we show that the acquisition of cell shape follows two stages where initially the cell forms contact with the micropattern. Here, the most distal contacts made by the cell with the micropattern define the apices of the cell shape. Then secondly, the cell borders that link two apices move so as to minimise the distance between the two apices. In these cell borders, the absence of an underlying adhesive substrate is overcome by stress fibres forming between the apices, which in turn are marked by an accumulation of focal adhesions. By inhibiting myosin function, cell borders on nonadhesive zones become more concave, suggesting that the stress fibres work against the membrane tension in the cell border. Moreover, this suggested that traction forces are unevenly distributed in stationary, nonmigrating, cells. By comparing the stress fibres in cells with one, two, or three nonadherent cell borders it was reasoned that stress fibre strength is inversely proportional to number. We conclude that cells of a given area can generate the same total sum of tractional forces but that these tractional forces are differently spaced depending on the spatial distribution of its adherence contacts. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


    Oxygen transport and consumption by suspended cells in microgravity: A multiphase analysis

    BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2008
    Ohwon Kwon
    Abstract A rotating bioreactor for the cell/tissue culture should be operated to obtain sufficient nutrient transfer and avoid damage to the culture materials. Thus, the objective of the present study is to determine the appropriate suspension conditions for the bead/cell distribution and evaluate oxygen transport in the rotating wall vessel (RWV) bioreactor. A numerical analysis of the RWV bioreactor is conducted by incorporating the Eulerian,Eulerian multiphase and oxygen transport equations. The bead size and rotating speed are the control variables in the calculations. The present results show that the rotating speed for appropriate suspensions needs to be increased as the size of the bead/cell increases: 10 rpm for 200 µm; 12 rpm for 300 µm; 14 rpm for 400 µm; 18 rpm for 600 µm. As the rotating speed and the bead size increase from 10 rpm/200 µm to 18 rpm/600 µm, the mean oxygen concentration in the 80% midzone of the vessel is increased by ,85% after 1-h rotation due to the high convective flow for 18 rpm/600 µm case as compared to 10 rpm/200 µm case. The present results may serve as criteria to set the operating parameters for a RWV bioreactor, such as the size of beads and the rotating speed, according to the growth of cell aggregates. In addition, it might provide a design parameter for an advanced suspension bioreactor for 3-D engineered cell and tissue cultures. Biotechnol. Bioeng. 2008;99: 99,107. © 2007 Wiley Periodicals, Inc. [source]


    Comparison of cell block preparation methods for nongynecologic ThinPrep specimens

    DIAGNOSTIC CYTOPATHOLOGY, Issue 10 2007
    Kelly Nigro M.D.
    Abstract The purpose of this study was to compare four cell block (CB) methods in the setting of nongynecologic ThinPrep (TP) specimens. 48 CBs were prepared from 12 nongynecologic TP specimens using the following CB methods: (1) Inverted filter sedimentation (IFS); (2) Thrombin method; (3) Albumin method; (4) Simple sedimentation. Each CB was assigned a cellularity score: 0 no cells, 1+ hypocellular, 2+ hypocellular with tissue fragments, 3+ cellular. A score of 2+ or 3+ was given for 11/12 of thrombin, 7/12 IFS, 5/12 albumin, and 2/12 simple sedimentation CBs. Thrombin CBs demonstrated a pale background clot with evenly distributed cells. Albumin CBs had a cracked uneven background. IFS CBs had a clear background, but were technically difficult and cells appeared artifactually crowded. In the setting of nongynecologic TP specimens, the thrombin CB was easily prepared and produced the best CB in regards to cellularity, cell distribution, and background quality. Diagn. Cytopathol. 2007;35:640,643. © 2007 Wiley-Liss, Inc. [source]


    Comparison of biodegradation kinetic parameters for naphthalene in batch and sand column systems by pseudomonas putida

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 2 2001
    Jeong-Hun Park
    Kinetic parameters for the degradation of naphthalene by Pseudomonas putida ( ATCC 17484) were estimated in both batch and column assays, in order to evaluate the role of flow and cell attachment on biodegradation rates. Suspended cells and cells attached to Ottawa sand were used under a variety of biomass levels, column flow-rates, and substrate concentrations. In batch systems, degradation followed zero order kinetics across the entire concentration range, while the columns exhibited decreased rates at concentrations less than 100 (,g/L), describable by Michaelis-Menten kinetics. This is reflected in elevated values of the half-saturation constant, Ks, in columns. We offer the explanation that this may have resulted from reactive heterogeneity within the porous media, imposing a distribution of length-scales for transfer of substrate to the cell surfaces. Well-mixed batch systems are expected to have both shorter and more uniform transfer distances. When kinetic parameters obtained in batch system are used for prediction of degradation in columns, at least two factors,exposed reduction of exposed cell surface are a and heterogeneity of cell distribution,will likely reduce overall column degradation rates. [source]


    Marginal zone B cell enrichment and strong follicular B cell reduction correlate with a delayed IgG response in a light chain diversity restricted mouse model

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2004
    Yacine
    Abstract Recently developed B6.,,,SEG mice (by crossing ,, and C57BL/6 mice congenic for the wild Mus spretus SEG strain , locus lacking genes coding for ,1 and ,3) have a very reduced light chain diversity. B6.,,,SEG mice produce only ,2 and ,x light chains. Regardless of their Igh haplotype, B6.,,,SEG mice show a restricted B cell distribution by light chain subtype with ,x dominance in all peripheral compartments except peritoneal cavity where ,2 is dominant. This distribution suggests that selection mechanisms act differently in different B cell compartments on ,2 and ,x bearing B cells. Sequence analysis before or following immunization did not reveal unusual mechanisms of diversification. B6.,,,SEG mice still respond to various challenging antigens using new Ab patterns. In particular, regardless of Igha or Ighb haplotypes, the anti-2,4-dinitrophenyl response is characterized by a restricted diversity for both heavy and light chains and a delayed IgG response when compared to B6 and B6.,, mice. We suggest that the delayed IgG response is due to the expansion of marginal zone B cells whereas follicular B cells are strongly reduced. [source]


    Use of enzyme to improve the technological quality of a panettone like baked product

    INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 12 2009
    Walter Benejam
    Summary The aim of this work was to study the influence of amylase, xylanase and lypase on quality parameters of panettone. Two concentrations of each enzyme were utilised. Besides, enzymes were added to dough or to sponge in order to analyse the effect of the time at which the enzymes were added on bread quality. Results showed that enzymes improved the quality of the product. Depending on the enzyme, the effect was more remarkable on bread height, cell distribution or crumb texture. Particularly, lipase and amylase increased bread height and decreased bread hardness. Although xylanase did not modify bread height, it produced better grain crumb structure and changed the amount of water needed for dough development. Results were different when the additive was incorporated in sponge or in dough. Variability of effects and changes in the results depend both on the doses and on the time of incorporation, all of which provide opportunities to optimise the quality of panettone using a combination of enzymes. [source]


    Cadmium-induced hormetic effect in differentiated Caco-2 cells: ERK and p38 activation without cell proliferation stimulation

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
    Marc Mantha
    Cadmium (Cd) is a toxic metal that enters the food chain. Following oral ingestion, the intestinal epithelium may in part protect against Cd toxicity but is also a target tissue. Using human enterocytic-like Caco-2 cells, we have previously shown differences in sensitivity to Cd according to the differentiation status. The present study focuses on Cd effects on differentiated cells. Concentration and time-dependent increases in MTT (3-[4,5-dimethyl-2-thiazol-2-yl]-2,5-diphenyltetrazolium bromide assay) activity were observed in post-confluent cultures exclusively, with a twofold maximal stimulation in 21-day-old cells exposed to 10,µM Cd for 24,h. No concomitant increase in [methyl- 3H] thymidine incorporation was noted and Cd did not modify cell distribution in the cell-cycle phases. However, Cd-induced increase in MTT activity was inhibited by cycloheximine as well as by inhibitors of ERK1/2 and p38, but not by that of JNK. Consistently, Cd increased the levels of ERK1/2 and p38 phosphorylation. Inhibition of Ras-GTP or PI3K enhanced the stimulatory effect of Cd, whereas mTOR inhibition had no effect. Inhibition of G protein-phospholipase and PKC decreased MTT stimulation. These results show a hormesis-like stimulation of Cd on MTT activity in differentiated intestinal cells exclusively. This effect is not related to cell proliferation but more likely to increased protein synthesis which involves ERK1/2 and p38 cascades and possibly PLC-, signaling pathways. Because growth-related differentiation of intestinal cells is linked to the selective and sequential activation of MAPKs, the impacts that these Cd-induced perturbations in signaling pathways may have on intestinal functions clearly deserve to be investigated. J. Cell. Physiol. 224:250,261, 2010 © 2010 Wiley-Liss, Inc. [source]


    Repair of porcine articular cartilage defect with a biphasic osteochondral composite,

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2007
    Ching-Chuan Jiang
    Abstract Autologous chondrocyte implantation (ACI) has been recently used to treat cartilage defects. Partly because of the success of mosaicplasty, a procedure that involves the implantation of native osteochondral plugs, it is of potential significance to consider the application of ACI in the form of biphasic osteochondral composites. To test the clinical applicability of such composite construct, we repaired osteochondral defect with ACI at low cell-seeding density on a biphasic scaffold, and combined graft harvest and implantation in a single surgery. We fabricated a biphasic cylindrical porous plug of DL-poly-lactide-co-glycolide, with its lower body impregnated with ,-tricalcium phosphate as the osseous phase. Osteochondral defects were surgically created at the weight-bearing surface of femoral condyles of Lee-Sung mini-pigs. Autologous chondrocytes isolated from the cartilage were seeded into the upper, chondral phase of the plug, which was inserted by press-fitting to fill the defect. Defects treated with cell-free plugs served as control. Outcome of repair was examined 6 months after surgery. In the osseous phase, the biomaterial retained in the center and cancellous bone formed in the periphery, integrating well with native subchondral bone with extensive remodeling, as depicted on X-ray roentgenography by higher radiolucency. In the chondral phase, collagen type II immunohistochemistry and Safranin O histological staining showed hyaline cartilage regeneration in the experimental group, whereas only fibrous tissue formed in the control group. On the International Cartilage Repair Society Scale, the experimental group had higher mean scores in surface, matrix, cell distribution, and cell viability than control, but was comparable with the control group in subchondral bone and mineralization. Tensile stress,relaxation behavior determined by uni-axial indentation test revealed similar creep property between the surface of the experimental specimen and native cartilage, but not the control specimen. Implanted autologous chondrocytes could survive and could yield hyaline-like cartilage in vivo in the biphasic biomaterial construct. Pre-seeding of osteogenic cells did not appear to be necessary to regenerate subchondral bone. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1277,1290, 2007 [source]


    Increased Perioculomotor Urocortin 1 Immunoreactivity in Genetically Selected Alcohol Preferring Rats

    ALCOHOLISM, Issue 11 2009
    Irina Fonareva
    Introduction:, Urocortin 1 (Ucn 1) is an endogenous peptide related to the corticotropin-releasing factor (CRF). Ucn 1 is mainly expressed in the perioculomotor area (pIII), and its involvement in alcohol self-administration is well confirmed in mice. In other species, the relationship between the perioculomotor Ucn 1-containing population of neurons (pIIIu) and alcohol consumption needs further investigation. The pIII also has a significant subpopulation of dopaminergic neurons. Because of dopamine's (DA) role in addiction, it is important to evaluate whether this subpopulation of neurons contributes to addiction-related phenotypes. Furthermore, the effects of gender on the relationship between Ucn 1 and tyrosine hydroxylase (TH) in pIII and alcohol preference in rats have not been previously assessed. Methods:, To address these issues, we compared 2 Sardinian alcohol-preferring sublines of rats, a population maintained at the Scripps Research Institute (Scr:sP) and a population maintained at University of Camerino,Marchigian Sardinian preferring rats (msP), to corresponding nonselectively bred Wistar rats of both sexes. Ucn 1- and TH-positive cells were detected on coronal midbrain sections from 6- to 8-week-old alcohol-naïve animals using brightfield and fluorescent immunohistochemistry. Ucn 1- and TH-positive cells in pIII were counted in the perioculomotor area, averaged across 2 to 3 sets, and binned into 3 bregma levels. Results:, Results demonstrated increased average counts of Ucn 1-positive cells in the middle bregma level in preferring male rats compared to Wistar controls and no difference in TH-positive cell counts in pIII. In addition, fluorescent double labeling revealed no colocalization of Ucn 1-positive and TH-positive neurons. Ucn 1 but not TH distribution was influenced by gender with female animals expressing more Ucn 1-positive cells than male animals in the peak bregma level. Conclusions:, These findings extend previous reports of increased Ucn 1-positive cell distribution in preferring lines of animals. They indicate that Ucn1 contributes to increased alcohol consumption across different species and that this contribution could be gender specific. The results also suggest that Ucn1 regulates positive reinforcing rather than aversive properties of alcohol and that these effects could be mediated by CRF2 receptors, independent of direct actions of DA. [source]


    Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice

    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 7 2009
    J. T. Oliveira
    Abstract Gellan gum is a polysaccharide that has been recently proposed by our group for cartilage tissue-engineering applications. It is commonly used in the food and pharmaceutical industry and has the ability to form stable gels without the use of harsh reagents. Gellan gum can function as a minimally invasive injectable system, gelling inside the body in situ under physiological conditions and efficiently adapting to the defect site. In this work, gellan gum hydrogels were combined with human articular chondrocytes (hACs) and were subcutaneously implanted in nude mice for 4 weeks. The implants were collected for histological (haematoxylin and eosin and Alcian blue staining), biochemical [dimethylmethylene blue (GAG) assay], molecular (real-time PCR analyses for collagen types I, II and X, aggrecan) and immunological analyses (immunolocalization of collagen types I and II). The results showed a homogeneous cell distribution and the typical round-shaped morphology of the chondrocytes within the matrix upon implantation. Proteoglycans synthesis was detected by Alcian blue staining and a statistically significant increase of proteoglycans content was measured with the GAG assay quantified from 1 to 4 weeks of implantation. Real-time PCR analyses showed a statistically significant upregulation of collagen type II and aggrecan levels in the same periods. The immunological assays suggest deposition of collagen type II along with some collagen type I. The overall data shows that gellan gum hydrogels adequately support the growth and ECM deposition of human articular chondrocytes when implanted subcutaneously in nude mice. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Lesional and nonlesional skin from patients with untreated juvenile dermatomyositis displays increased numbers of mast cells and mature plasmacytoid dendritic cells

    ARTHRITIS & RHEUMATISM, Issue 9 2010
    Sheela Shrestha
    Objective To investigate the distribution of mast cells and dendritic cell (DC) subsets in paired muscle and skin (lesional/nonlesional) from untreated children with juvenile dermatomyositis (DM). Methods Muscle and skin biopsy samples (4 skin biopsy samples with active rash) from 7 patients with probable/definite juvenile DM were compared with muscle and skin samples from 10 healthy pediatric controls. Mast cell distribution and number were assessed by toluidine blue staining and analyzed by Student's t -test. Immunohistochemical analysis was performed to identify mature DCs, myeloid DCs (MDCs), and plasmacytoid DCs (PDCs) by using antibodies against DC-LAMP, blood dendritic cell antigen 1 (BDCA-1), and BDCA-2, respectively. Myxovirus resistance protein A (MxA) staining indicated active type I interferon (IFN) signaling; positive staining was scored semiquantitatively and analyzed using the Mann-Whitney U test. Results Both inflamed and nonlesional skin from patients with juvenile DM contained more mast cells than did skin from pediatric controls (P = 0.029), and comparable numbers of mast cells were present in lesional and nonlesional skin. Interestingly, mast cell numbers were greater in skin than in paired muscle tissue from patients with juvenile DM (P = 0.014) and were not increased in muscle from patients with juvenile DM compared with control muscle. Both muscle and skin from patients with juvenile DM showed more mature PDCs and MxA staining than did their corresponding control tissues (P < 0.05). In both muscle and skin from patients with juvenile DM and in pediatric control muscle, there were fewer MDCs than PDCs, and the distributions of MDCs and PDCs were similar in pediatric control skin samples. Conclusion The identification of mast cells in skin (irrespective of rash) from patients with juvenile DM, but not in paired muscle tissue, suggests that they have a specific role in juvenile DM skin pathophysiology. In skin from patients with juvenile DM, increased numbers of PDCs and increased expression of type I IFN,induced protein suggest a selective influence on T cell differentiation and subsequent effector function. [source]


    Inflammatory cell mapping of the respiratory tract in fatal asthma

    CLINICAL & EXPERIMENTAL ALLERGY, Issue 5 2005
    S. De Magalhães Simões
    Summary Background The site and distribution of inflammation in the airways of asthmatic patients has been largely investigated. Inflammatory cells are distributed in both large and small airways in asthma. It has been demonstrated that distal lung inflammation in asthma may significantly contribute to the pathophysiology of the disease. The upper airways have also been implicated in the overall asthmatic inflammation. Although it is now accepted that lung inflammation is not restricted to the intrapulmonary airways in asthma, little is known about cell distribution in the other lung compartments and their relation to the intrapulmonary airways. Objective We aimed to map the inflammatory process in fatal asthma (FA), from the upper airways to the lung parenchyma. Methods Eosinophil, neutrophil, mast cell and lymphocyte content were determined in nasal mucosa, the trachea, intrapulmonary airways and parenchyma (peribronchiolar and distal) of 20 patients with FA and 10 controls. Results Eosinophil content was higher in all studied areas in FA compared with controls (P<0.02). Mast cell content was higher in the outer area of larger airways, small membranous bronchioles and in peribronchiolar parenchyma of FA compared with controls (P<0.04). CD3+, CD4+and CD20+cells showed increased content in FA intrapulmonary airways compared with controls (P<0.05). There was a positive correlation between CD4+cell content in nasal mucosa and larger airways in asthmatics. Increased neutrophil content was observed only in peribronchiolar parenchyma of FA (P=0.028). Conclusion Eosinophils present a widespread distribution within the respiratory tract in FA, from the nasal mucosa to the distal lung. The outer wall of small membranous bronchioles is the main site of inflammatory changes in FA. There is a localized distribution of alveolar inflammation at the peribronchiolar region for mast cells and neutrophils. Our findings provide further evidence of the importance of the lung periphery in the pathophysiology of FA. [source]


    Idiopathic and allergic rhinitis show a similar inflammatory response

    CLINICAL OTOLARYNGOLOGY, Issue 6 2000
    D.G. Powe
    Hypothesis. Idiopathic and allergic rhinitics have similar mucosal mast cell and IgE+ cell distribution. Introduction. The pathophysiology of idiopathic rhinitis (IR) is unknown but patients differ from those with allergic rhinitis (AR) in that they do not express IgE. Our study is novel because we investigated: (1) three study groups chosen prospectively using strict selection criteria over a 4-year period; and (2) mast cell and IgE+ cell counts were on full-thickness, full-length inferior turbinate mucosa. Methods. Patient groups: allergic (n = 17); idiopathic: (n = 16); and normal controls (n = 9). Immunohistochemistry: mast cell and IgE+ cell detection using anti-mast cell tryptase and anti-IgE antibodies with an avidin-biotin (peroxidase) complex on paraffin processed tissue. Morphometry: sections were divided into three strata comprising an epithelial layer and two submucosal layers. Statistics: Mann,Whitney non-parametric analysis. ,,= 0.05, ,,= 0.2. Results. The power of the study was 89%. Mast cells (P = 0.03) and IgE+ cells (P < 0.05) were significantly increased in the epithelium of idiopahtic and allergic rhinitis mucosa compared to the normal control. More IgE+ cells were counted in the AR and IR groups compared to the controls in all three strata. Conclusion. Mast cells and IgE+ cells are involved in the pahtophysiology of IR. We propose that IR may be a variant form of AR involving a localized IgE-mediated inflammatory response. [source]


    Pigment cell distributions in different tissues of the zebrafish, with special reference to the striped pigment pattern

    DEVELOPMENTAL DYNAMICS, Issue 2 2005
    Masashi Hirata
    Abstract The orderly pigment pattern of zebrafish (Danio rerio) is a good model system for studying how spatial patterns form in animals. Recent molecular genetic studies have shown that interactions between the pigment cells play major roles in pattern formation. In the present study, we performed comparative transmission electron microscopy of pigment cells, in order to clarify the structural interactions of pigment cells in tissues with and without a striped pattern. In patterned tissues, pigment cells were distributed as a one-cell-thick sheet. The layer order of the sheets is always kept strictly. In tissues without a striped pattern, the layer order was often disturbed or the cells were distributed in a scattered, double-sheeted, or an accumulated pile. Our observations suggest that the underlying mechanism that controls the vertical order of the pigment cells is related to that controlling the stripe pattern. Developmental Dynamics 234:293,300, 2005. © 2005 Wiley-Liss, Inc. [source]


    Computational Network Model Prediction of Hemodynamic Alterations Due to Arteriolar Remodeling in Interval Sprint Trained Skeletal Muscle

    MICROCIRCULATION, Issue 3 2007
    Kyle W. Binder
    ABSTRACT Objectives: Exercise training is known to enhance skeletal muscle blood flow capacity, with high-intensity interval sprint training (IST) primarily affecting muscles with a high proportion of fast twitch glycolytic fibers. The objective of this study was to determine the relative contributions of new arteriole formation and lumenal arteriolar remodeling to enhanced flow capacity and the impact of these adaptations on local microvascular hemodynamics deep within the muscle. Methods: The authors studied arteriolar adaptation in the white/mixed-fiber portion of gastrocnemius muscles of IST (6 bouts of running/day; 2.5 min/bout; 60 m/min speed; 15% grade; 4.5 min rest between bouts; 5 training days/wk; 10 wks total) and sedentary (SED) control rats using whole-muscle Microfil casts. Dimensional and topological data were then used to construct a series of computational hemodynamic network models that incorporated physiological red blood cell distributions and hematocrit and diameter dependent apparent viscosities. Results: In comparison to SED controls, IST elicited a significant increase in arterioles/order in the 3A through 6A generations. Predicted IST and SED flows through the 2A generation agreed closely with in vivo measurements made in a previous study, illustrating the accuracy of the model. IST shifted the bulk of the pressure drop across the network from the 3As to the 4As and 5As, and flow capacity increased from 0.7 mL/min in SED to 1.5 mL/min in IST when a driving pressure of 80 mmHg was applied. Conclusions: The primary adaptation to IST is an increase in arterioles in the 3A through 6A generations, which, in turn, creates an approximate doubling of flow capacity and a deeper penetration of high pressure into the arteriolar network. [source]


    Monosodium urate monohydrate crystal,induced inflammation in vivo: Quantitative histomorphometric analysis of cellular events

    ARTHRITIS & RHEUMATISM, Issue 6 2002
    C. Schiltz
    Objective To quantify the inflammatory cell response in rat air pouch pseudosynovial membrane during monosodium urate monohydrate (MSU) crystal,induced inflammation. Methods In the rat air-pouch model, we used a computer-assisted histomorphometric method to quantify cell distributions, based on cell linear densities, in histologic sections of membranes from pouches injected with MSU or saline. The volume, white blood cell (WBC) count, and histamine content of the pouch exudates were determined at several time points. Results Injection of 10 mg of MSU crystals into the pouch produced an acute exudate. After peaking at 24 hours, the exudate volume and WBC count decreased spontaneously over the next 3 days, simulating the self-limited course of acute gout. Membrane thickness followed a parallel course. Membrane polymorphonuclear cell (PMN) linear densities were closely correlated with exudate WBC counts, suggesting PMN recruitment from the subintimal synovial membrane. Both monocyte/macrophage and mast cell linear densities increased in the subintimal layer 2 hours after crystal injection (P = 0.038 and P = 0.03, respectively, versus controls), whereas PMN linear densities showed 2 peaks, one at 4 hours and the other 24 hours. The exudate histamine content peaked 6 hours after crystal injection, when mast cell linear densities were minimal in the membranes, suggesting mast cell degranulation. Conclusion An increase in monocyte/macrophage and mast cell densities in the membrane preceded the PMN influx in the pouch membrane and exudate, suggesting that mast cells may be involved in the early phase of MSU crystal,induced inflammation, at least in this rat model. [source]


    Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering

    BIOTECHNOLOGY PROGRESS, Issue 2 2010
    Robert Maidhof
    Abstract The requirements for engineering clinically sized cardiac constructs include medium perfusion (to maintain cell viability throughout the construct volume) and the protection of cardiac myocytes from hydrodynamic shear. To reconcile these conflicting requirements, we proposed the use of porous elastomeric scaffolds with an array of channels providing conduits for medium perfusion, and sized to provide efficient transport of oxygen to the cells, by a combination of convective flow and molecular diffusion over short distances between the channels. In this study, we investigate the conditions for perfusion seeding of channeled constructs with myocytes and endothelial cells without the gel carrier we previously used to lock the cells within the scaffold pores. We first established the flow parameters for perfusion seeding of porous elastomer scaffolds using the C2C12 myoblast line, and determined that a linear perfusion velocity of 1.0 mm/s resulted in seeding efficiency of 87% ± 26% within 2 hours. When applied to seeding of channeled scaffolds with neonatal rat cardiac myocytes, these conditions also resulted in high efficiency (77.2% ± 23.7%) of cell seeding. Uniform spatial cell distributions were obtained when scaffolds were stacked on top of one another in perfusion cartridges, effectively closing off the channels during perfusion seeding. Perfusion seeding of single scaffolds resulted in preferential cell attachment at the channel surfaces, and was employed for seeding scaffolds with rat aortic endothelial cells. We thus propose that these techniques can be utilized to engineer thick and compact cardiac constructs with parallel channels lined with endothelial cells. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


    Perturbation theory and excursion set estimates of the probability distribution function of dark matter, and a method for reconstructing the initial distribution function

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Tsz Yan Lam
    ABSTRACT Non-linear evolution is sometimes modelled by assuming there is a deterministic mapping from initial to final values of the locally smoothed overdensity. However, if an underdense region is embedded in a denser one, then it is possible that its evolution is determined by its surroundings, so the mapping between initial and final overdensities is not as ,local' as one might have assumed. If this source of non-locality is not accounted for, then it appears as stochasticity in the mapping between initial and final densities. Perturbation theory methods ignore this ,cloud-in-cloud' effect, whereas methods based on the excursion set approach do account for it; as a result, one may expect the two approaches to provide different estimates of the shape of the non-linear counts in cells distribution. We show that, on scales where the rms fluctuation is small, this source of non-locality has only a small effect, so the predictions of the two approaches differ only on the small scales on which perturbation theory is no longer expected to be valid anyway. We illustrate our results by comparing the predictions of these approaches when the initial,final mapping is given by the spherical collapse model. Both are in reasonably good agreement with measurements in numerical simulations on scales where the rms fluctuation is of the order of unity or smaller. If the deterministic mapping from initial conditions to final density depends on quantities other than the initial density, then this will also manifest as stochasticity in the mapping from initial density to final. For example, the Zeldovich approximation and the ellipsoidal collapse model both assume that the initial shear field plays an important role in determining the evolution. We compare the predictions of these approximations with simulations, both before and after accounting for the ,cloud-in-cloud' effect. Our analysis accounts approximately for the fact that the shape of a cell at the present time is different from its initial shape; ignoring this makes a noticeable difference on scales where the rms fluctuation in a cell is of the order of unity or larger. On scales where the rms fluctuation is 2 or less, methods based on the spherical model are sufficiently accurate to permit a rather accurate reconstruction of the shape of the initial distribution from the non-linear one. This can be used as the basis for a method for constraining the statistical properties of the initial fluctuation field from the present-day field, under the hypothesis that the evolution was purely gravitational. We illustrate by showing how the highly non-Gaussian non-linear density field in a numerical simulation can be transformed to provide an accurate estimate of the initial Gaussian distribution from which it evolved. [source]