Cell Degeneration (cell + degeneration)

Distribution by Scientific Domains


Selected Abstracts


Arrested differentiation and epithelial cell degeneration in zebrafish lens mutants

DEVELOPMENTAL DYNAMICS, Issue 4 2001
Thomas S. Vihtelic
Abstract In a chemical mutagenesis screen, we identified two zebrafish mutants that possessed small pupils. Genetic complementation revealed these two lines are due to mutations in different genes. The phenotypes of the two mutants were characterized using histologic, immunohistochemical, and tissue transplantation techniques. The arrested lens (arl) mutant exhibits a small eye and pupil phenotype at 48 hr postfertilization (hpf) and lacks any histologically identifiable lens structures by 5 days postfertilization (dpf). In contrast, the disrupted lens (dsl) mutants are phenotypically normal until 5 dpf, and then undergo lens disorganization and cell degeneration that is apparent by 7 dpf. Histology reveals the arl mutant terminates lens cell differentiation by 48 hpf, whereas the dsl lens exhibits a defective lens epithelial cell population at 5 dpf. Lens transplantation experiments demonstrate both mutations are autonomous to the lens tissue. Immunohistochemistry reveals the retinal cells may suffer subtle effects, possibly due to the lens abnormalities. © 2001 Wiley-Liss, Inc. [source]


Apoptosis in oral lichen planus

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 5 2001
Evelyn Neppelberg
Apoptotic cell death may be a contributory cause of basal cell destruction in oral lichen planus (OLP). Therefore, the purpose of this study was to investigate the rate of apoptosis in OLP and the expression of two proteins (FasR and FasL) regulating this process. Biopsies from 18 patients with histologically diagnosed OLP were investigated, with comparison to normal oral mucosa of healthy persons. For visualisation of DNA fragmentation, the TUNEL method was used. In order to characterise the infiltrating cell population (CD3, CD4, CD8) and expression of FasR and FasL, we used an immunohistochemical technique. The results showed that T cells dominated in the subepithelial cell infiltrate. Within the epithelium the apoptotic cells were confined to the basal cell layer, and more apoptotic cells were seen in areas with basal cell degeneration and atrophic epithelium. There was a prominent expression of FasR/FasL in OLP, with a rather uniform distribution throughout the inflammatory cell infiltrate. In the epithelium, the FasR/FasL expression was more abundant in the basal cell area compared to the suprabasal cell layer. In conclusion, apoptosis within the epithelium is significantly increased in situ in OLP compared to normal oral mucosa, and seems to be related to the epithelial thickness. [source]


Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition

AGING CELL, Issue 6 2009
María Paz Gavilán
Summary Dysfunctions of the ubiquitin proteasome system (UPS) have been proposed to be involved in the aetiology and/or progression of several age-related neurodegenerative disorders. However, the mechanisms linking proteasome dysfunction to cell degeneration are poorly understood. We examined in young and aged rat hippocampus the activation of the unfolded protein response (UPR) under cellular stress induced by proteasome inhibition. Lactacystin injection blocked proteasome activity in young and aged animals in a similar extent and increased the amount of ubiquitinated proteins. Young animals activated the three UPR arms, IRE1,, ATF6, and PERK, whereas aged rats failed to induce the IRE1, and ATF6, pathways. In consequence, aged animals did not induce the expression of pro-survival factors (chaperones, Bcl-XL and Bcl-2), displayed a more sustained expression of pro-apoptotic markers (CHOP, Bax, Bak and JKN), an increased caspase-3 processing. At the cellular level, proteasome inhibition induced neuronal damage in young and aged animals as assayed using Fluorojade-B staining. However, degenerating neurons were evident as soon as 24 h postinjection in aged rats, but it was delayed up to 3 days in young animals. Our findings show evidence supporting age-related dysfunctions in the UPR activation as a potential mechanism linking protein accumulation to cell degeneration. An imbalance between pro-survival and pro-apoptotic proteins, because of noncanonical activation of the UPR in aged rats, would increase the susceptibility to cell degeneration. These findings add a new molecular vision that might be relevant in the aetiology of several age-related neurodegenerative disorders. [source]


Defective calcium homeostasis in the cerebellum in a mouse model of Niemann,Pick A disease

JOURNAL OF NEUROCHEMISTRY, Issue 6 2005
Luba Ginzburg
Abstract We recently demonstrated that calcium homeostasis is altered in mouse models of two sphingolipid storage diseases, Gaucher and Sandhoff diseases, owing to modulation of the activities of a calcium-release channel (the ryanodine receptor) and of the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) respectively, by the accumulating sphingolipids. We now demonstrate that calcium homeostasis is also altered in a mouse model of Niemann,Pick A disease, the acid sphingomyelinase (A-SMase)-deficient mouse (ASM,/,), with reduced rates of calcium uptake via SERCA in the cerebellum of 6,7-month-old mice. However, the mechanism responsible for defective calcium homeostasis is completely different from that observed in the other two disease models. Thus, levels of SERCA expression are significantly reduced in the ASM,/, cerebellum by 6,7 months of age, immediately before death of the mice, as are levels of the inositol 1,4,5-triphosphate receptor (IP3R), the major calcium-release channel in the cerebellum. Systematic analyses of the time course of loss of SERCA and IP3R expression revealed that loss of the IP3R preceeded that of SERCA, with essentially no IP3R remaining by 4 months of age, whereas SERCA was still present even after 6 months. Expression of zebrin II (aldolase C), a protein found in about half of the Purkinje cells in the adult mouse cerebellum, was essentially unchanged during development. We discuss possible pathological mechanisms related to calcium dysfunction that may cause Purkinje cell degeneration, and as a result, the onset of neuropathology in Niemann,Pick A disease. [source]


Dysfunction of the ubiquitin,proteasome system in Parkinson's disease

JOURNAL OF NEUROCHEMISTRY, Issue 2003
P. Jenner
The cause of nigral cell degeneration and Lewy body formation in Parkinson's disease (PD) remains unknown but may involve impaired proteolysis. Evidence from both sporadic and familial forms of PD suggest the involvement of alterations in the ubiquitin,proteasomal system. In postmortem tissues from PD cases, there is a loss of 26S proteasomal enzyme activity coupled to a decrease in the expression of ,-subunits in substantia nigra while ,-subunit expression remains unchanged. The expression of PA700 is up-regulated in a number of brain regions in PD but not in substantia nigra. Interestingly, there was little or no expression of PA28 in the nigra in both aged control tissue or in PD. These data suggest that alterations in protein handling may be key to the formation of Lewy bodies in PD. Indeed, in vitro and in vivo inhibition of proteasomal activity causes the death of dopaminergic neurones. Recent evidence suggests that the formation of Lewy bodies may be linked to impaired proteasomal function in centrosomes leading to aggresome formation. [source]


Changes in the connections of the main olfactory bulb after mitral cell selective neurodegeneration

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2007
Javier S. Recio
Abstract The connections of the main olfactory bulb (OB) of the mouse were studied with iontophoretic injections of biotinylated dextran amine. To sort efferences from mitral cells and tufted cells, the Purkinje cell degeneration (PCD) mouse was used. This mutant animal undergoes a specific neurodegeneration of mitral cells, whereas tufted cells do not degenerate. The unilateral tracer injections used were small and confined largely to the OB of both PCD and control mice at P120. Seven days after tracer injection, the efferences from the OB and the centrifugal afferences from secondary olfactory structures to it were studied. Although there is a large overlap of their target fields, mitral cell axons innervated more caudal regions of the olfactory cortex than tufted cell axons, thus providing definitive evidence of the differential projections of olfactory output neurons. Additionally, an important increase in retrogradely-labeled neurons was detected in the ipsilateral anterior olfactory nucleus of the mutant animals. This was not observed in any other secondary olfactory structure, suggesting a strengthening of the centrifugal input to the OB from that central area after mitral cell loss. Moreover, we recorded a complete loss of bilaterality in the olfactory connections of the PCD mice due to degeneration of the anterior commissure. These results point to an important reorganization of this essential olfactory circuit between the anterior olfactory nucleus and the OB, and hint at a transsynaptic level of plasticity not considered previously in literature. © 2007 Wiley-Liss, Inc. [source]


Proliferation and differentation markers in snuff-induced oral mucosal lesions

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 5 2002
Marina Merne
Abstract Background: Regular use of snuff is known to cause whitish oral mucosal lesions of variable severity at the usual quid placement site. The main aim of this study was to elucidate cellular mechanisms involved in snuff-induced epithelial changes. Methods: Expression patterns for markers of cell proliferation (PCNA, Ki-67), cell cycle regulation (p53, p21), keratin changes (pankeratin, CK18, CK19), cell stress (HSP 70) and collagen type IV in 14 snuff-induced oral mucosal lesions and 12 control samples were analyzed by immunohistochemistry (IHC). Results: On light microscopy, all snuff-induced lesions were characterized by a hyperkeratinized and thickened epithelium. Some vacuolized cells, markers of cell degeneration, were frequently seen (in 9/14 of the samples) in the superficial layers in epithelia. Expression of PCNA and Ki-67 was found in a statistically significantly fewer cells in snuff-induced lesions (P < 0.001) than in the controls. This indicates that epithelia in snuff-induced lesions are not thickened as a result of increased cellular proliferation, but by protracted turnover of differentiating cells. Of cell cycle markers, p21 was found be up-regulated in 4/14 snuff-induced lesions, probably by p53-independent pathways. Only two snuff-induced lesions showed p53 positivity. However, the number of stained cells with p53 and p21 was not statistically different from that in controls. Expression of CK18, but not any alterations in CK19 expression, was seen in 5 of 14 snuff-induced lesions. Snuff also seems to stimulate the expression of collagen type IV, possibly by basal cells, as indicated by the thickened staining of the basal lamina. Conclusions: The findings of this study showing suppressed cellular proliferation and infrequent p53 dysfunction in snuff lesions may partly explain why dysplastic changes are seldom seen in mucosal lesions induced by the Scandinavian type of snuff. [source]


The protective effect of melatonin on methamphetamine-induced calpain-dependent death pathway in human neuroblastoma SH-SY5Y cultured cells

JOURNAL OF PINEAL RESEARCH, Issue 2 2010
Wilasinee Suwanjang
Abstract:, Methamphetamine (METH) is a potent psychostimulant drug that may cause neuronal cell degeneration. The underlying mechanisms of METH-induced neuronal toxicity remains poorly understood. In this study, we investigated an important role of calpain-dependent cascades in methamphetamine-induced toxicity in human dopaminergic neuroblastoma SH-SY5Y cultured cell lines. In addition, the protective effect of melatonin against METH-induced calpain-dependent death pathway was also investigated. The results of this study show that METH significantly decreased cell viability and tyrosine hydroxylase phosphorylation in SH-SY5Y cultured cells. Melatonin reversed the toxic effect of METH by inducing cell viability. In addition, melatonin was able to restore the reduction in mitochondrial function and phosphorylation of tyrosine hydroxylase in SH-SY5Y treated cells. An induction of calpain expression and activity but a reduction of calpain inhibitor (calpastatin) protein levels were observed in SH-SY5Y cells treated with METH but these effects were diminished by melatonin. These results implicated calpain-dependent death pathways in the processes of METH-induced toxicity and also indicated that melatonin has the capacity to reverse this toxic effect in SH-SY5Y cultured cells. [source]


Melatonin inhibits MPP+ -induced caspase-mediated death pathway and DNA fragmentation factor-45 cleavage in SK-N-SH cultured cells

JOURNAL OF PINEAL RESEARCH, Issue 2 2007
Jirapa Chetsawang
Abstract:, Neurodegenerative diseases such as Parkinson's disease are illnesses associated with high morbidity and mortality with few, or no effective, options available for their treatment. In addition, the direct cause of selective dopaminergic cell loss in Parkinson's disease has not been clearly understood. Taken together, several studies have demonstrated that melatonin has a neuroprotective effect both in vivo and in vitro. Accordingly, the effects of melatonin on 1-methyl, 4-phenyl, pyridinium ion (MPP+)-treated cultured human neuroblastoma SK-N-SH cell lines were investigated in the present study. The results showed that MPP+ significantly decreased cell viability. By contrast, an induction of phosphorylation of c-Jun, activation of caspase-3 enzyme activity, cleavage of DNA fragmentation factors 45 and DNA fragmentation were observed in MPP+ -treated cells. These changes were diminished by melatonin. These results demonstrate the cellular mechanisms of neuronal cell degeneration induced via c-Jun-N-terminal kinases and caspase-dependent signaling, and the potential role of melatonin on protection of neuronal cell death induced by this neurotoxin. [source]


Decreased cortical inhibition and yet cerebellar pathology in ,familial cortical myoclonic tremor with epilepsy'

MOVEMENT DISORDERS, Issue 16 2007
Anne-Fleur van Rootselaar MD
Abstract Cortical hyperexcitability is a feature of "familial cortical myoclonic tremor with epilepsy" (FCMTE). However, neuropathological investigations in a single FCMTE patient showed isolated cerebellar pathology. Pathological investigations in a second FCMTE patient, reported here, confirmed cerebellar Purkinje cell degeneration and a normal sensorimotor cortex. Subsequently, we sought to explore the nature of cerebellar and motor system pathophysiology in FCMTE. Eye movement recordings and transcranial magnetic stimulation performed in six related FCMTE patients showed impaired saccades and smooth pursuit and downbeat nystagmus upon hyperventilation, as in patients with spinocerebellar ataxia type 6. In FCMTE patients short-interval intracortical inhibition (SICI) was significantly reduced. Resting motor threshold, recruitment curve, silent period, and intracortical facilitation were normal. The neuropathological and ocular motor abnormalities indicate cerebellar involvement in FCMTE patients. Decreased SICI is compatible with intracortical GABAA -ergic dysfunction. Cerebellar and intracortical functional changes could result from a common mechanism such as a channelopathy. Alternatively, decreased cortical inhibition may be caused by dysfunction of the cerebello-thalamo-cortical loop as a result of primary cerebellar pathology. © 2007 Movement Disorder Society [source]


What determines the molecular composition of abnormal protein aggregates in neurodegenerative disease?

NEUROPATHOLOGY, Issue 4 2008
Richard A. Armstrong
Abnormal protein aggregates, in the form of either extracellular plaques or intracellular inclusions, are an important pathological feature of the majority of neurodegenerative disorders. The major molecular constituents of these lesions, viz., ,-amyloid (A,), tau, and ,-synuclein, have played a defining role in the diagnosis and classification of disease and in studies of pathogenesis. The molecular composition of a protein aggregate, however, is often complex and could be the direct or indirect consequence of a pathogenic gene mutation, be the result of cell degeneration, or reflect the acquisition of new substances by diffusion and molecular binding to existing proteins. This review examines the molecular composition of the major protein aggregates found in the neurodegenerative diseases including the A, and prion protein (PrP) plaques found in Alzheimer's disease (AD) and prion disease, respectively, and the cellular inclusions found in the tauopathies and synucleinopathies. The data suggest that the molecular constituents of a protein aggregate do not directly cause cell death but are largely the consequence of cell degeneration or are acquired during the disease process. These findings are discussed in relation to diagnosis and to studies of to disease pathogenesis. [source]


Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2002
C. R. Cabello
In a stereological study of the human substantia nigra (SN), the total number of melanin-positive and melanin-negative neurones from 28 male subjects aged 19,92 years was estimated using a uniform sampling design and optical disectors. There was a significant decrease in the total number of melanin-positive neurones as a function of age (r2=0.18, residual-CV=0.35, 2P=0.032). Using the rotator method, the size distribution of the melanin-positive neurones was estimated and showed a significant difference in mean cell volume of melanin-positive neurones between the seven youngest (21,077 µm3) and the seven oldest individuals (32,011 µm3), 2P=0.022. Using a combination of the total number of melanin-positive neurones and their size distribution, the total perikaryon volume of melanin-positive neurones could be estimated and showed no decrease with increasing age (r2=0.01, residual-CV=0.41, 2P=0.62). Age-related decline in dopamine-transporter neurones within the SN might explain the occurrence of extrapyramidal symptoms in many elderly individuals. Although age-related cell hypertrophy is usually considered to be an indication of cell degeneration or necrosis, this might not always be the case. The fact that motor symptoms, although present in many of the elderly, are of a limited nature despite the high percentage of lost neurones could be due to a compensatory increase in the cell body of dopamine-producing SN neurones. Thus, the total amount of cell substance capable of producing the essential transmitters might not be reduced to a critically low level as a result of ageing. [source]


OT-674 Suppresses Photooxidative Processes Initiated by an RPE Lipofuscin Fluorophore

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2008
Jilin Zhou
The pathological processes involved in age-related macular degeneration (AMD) include retinal pigment epithelial (RPE) cell degeneration; oxidative mechanisms likely contribute to the demise of these cells. Indeed, RPE cells may be particularly susceptible to photooxidative mechanisms since they accumulate retinoid-derived photoreactive compounds that constitute the lipofuscin of the cell. Thus we undertook to test the capacity of OT-674, the reduction product (Tempol-H) of the nitroxide Tempol, to suppress photooxidative processes initiated by the RPE lipofuscin fluorophore A2E. Accordingly, when ARPE-19 cells that had accumulated A2E were irradiated at 430 nm, pretreatment with OT-674 (0.01,10 mm) was found to confer a resistance to cell death. Monitoring by quantitative HPLC also showed that OT-674 reduced A2E photooxidation in a cell-free system. Moreover, when presented with a singlet oxygen generator, OT-674 served as a quencher of singlet oxygen that was more effective than Trolox and ,-tocopherol. We conclude that OT-674 is a potent antioxidant that suppresses photooxidative processes generated in cultured RPE cells by the lipofuscin fluorophore A2E. As oxidative damage to RPE cells is considered to be a risk factor for AMD, antioxidant therapy with OT-674 may serve a protective role. [source]


Effects of optic nerve injury, glaucoma, and neuroprotection on the survival, structure, and function of ganglion cells in the mammalian retina

THE JOURNAL OF PHYSIOLOGY, Issue 18 2008
A. J. Weber
Glaucoma is an optic neuropathy that originates with pressure-induced damage to the optic nerve. This results in the retrograde degeneration of ganglion cells in the retina, and a progressive loss of vision. Over the past several years, a number of studies have described the structural and functional changes that characterize ganglion cell degeneration in the glaucomatous eye, and following optic nerve injury. In addition, a variety of different strategies for providing neuroprotection to the injured retina have been proposed. Many of these are based on the use of brain-derived neurotrophic factor (BDNF), a particularly potent neuroprotectant in the mammalian eye and the basis of our research in this area. Of particular importance is the fact that BDNF not only promotes ganglion cell survival following damage to the optic nerve, but also helps to preserve the structural integrity of the surviving neurons, which in turn results in enhanced visual function. The studies presented here describe these attributes, and serve as the foundation for ongoing work that suggests a need to think beyond the eye in the development of future treatment strategies. [source]


Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram

THE JOURNAL OF PHYSIOLOGY, Issue 10 2008
Deb Kumar Mojumder
Voltage-gated sodium channels (Nav channels) in retinal neurons are known to contribute to the mammalian flash electroretinogram (ERG) via activity of third-order retinal neurons, i.e. amacrine and ganglion cells. This study investigated the effects of tetrodotoxin (TTX) blockade of Nav channels on the b-wave, an ERG wave that originates mainly from activity of second-order retinal neurons. ERGs were recorded from anaesthetized Brown Norway rats in response to brief full-field flashes presented over a range of stimulus energies, under dark-adapted conditions and in the presence of steady mesopic and photopic backgrounds. Recordings were made before and after intravitreal injection of TTX (,3 ,m) alone, 3,6 weeks after optic nerve transection (ONTx) to induce ganglion cell degeneration, or in combination with an ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 200 ,m) to block light-evoked activity of inner retinal, horizontal and OFF bipolar cells, or with the glutamate agonist N -methyl- d -aspartate (NMDA, 100,200 ,m) to reduce light-evoked inner retinal activity. TTX reduced ERG amplitudes measured at fixed times corresponding to b-wave time to peak. Effects of TTX were seen under all background conditions, but were greatest for mesopic backgrounds. In dark-adapted retina, b-wave amplitudes were reduced only when very low stimulus energies affecting the inner retina, or very high stimulus energies were used. Loss of ganglion cells following ONTx did not affect b-wave amplitudes, and injection of TTX in eyes with ONTx reduced b-wave amplitudes by the same amount for each background condition as occurred when ganglion cells were intact, thereby eliminating a ganglion cell role in the TTX effects. Isolation of cone-driven responses by presenting test flashes after cessation of a rod-saturating conditioning flash indicated that the TTX effects were primarily on cone circuits contributing to the mixed rod,cone ERG. NMDA significantly reduced only the additional effects of TTX on the mixed rod,cone ERG observed under mesopic conditions, implicating inner retinal involvement in those effects. After pharmacological blockade with CNQX, TTX still reduced b-wave amplitudes in cone-isolated ERGs indicating Nav channels in ON cone bipolar cells themselves augment b-wave amplitude and sensitivity. This augmentation was largest under dark-adapted conditions, and decreased with increasing background illumination, indicating effects of background illumination on Nav channel function. These findings indicate that activation of Nav channels in ON cone bipolar cells affects the b-wave of the rat ERG and must be considered when analysing results of ERG studies of retinal function. [source]


Presbycusis: A Human Temporal Bone Study of Individuals With Downward Sloping Audiometric Patterns of Hearing Loss and Review of the Literature

THE LARYNGOSCOPE, Issue S112 2006
Erik G. Nelson MD
Abstract Objective: The purpose of this retrospective case review was to identify patterns of cochlear element degeneration in individuals with presbycusis exhibiting downward sloping audiometric patterns of hearing loss and to correlate these findings with those reported in the literature to clarify conflicting concepts regarding the association between hearing loss and morphologic abnormalities. Methods: Archival human temporal bones from individuals with presbycusis were selected on the basis of strict audiometric criteria for downward-sloping audiometric thresholds. Twenty-one temporal bones that met these criteria were identified and compared with 10 temporal bones from individuals with normal hearing. The stria vascularis volumes, spiral ganglion cell populations, inner hair cells, and outer hair cells were quantitatively evaluated. The relationship between the severity of hearing loss and the degeneration of cochlear elements was analyzed using univariate linear regression models. Results: Outer hair cell loss and ganglion cell loss was observed in all individuals with presbycusis. Inner hair cell loss was observed in 18 of the 21 individuals with presbycusis and stria vascularis loss was observed in 10 of the 21 individuals with presbycusis. The extent of degeneration of all four of the cochlear elements evaluated was highly associated with the severity of hearing loss based on audiometric thresholds at 8,000 Hz and the pure-tone average at 500, 1,000, and 2,000 Hz. The extent of ganglion cell degeneration was associated with the slope of the audiogram. Conclusions: Individuals with downward-sloping audiometric patterns of presbycusis exhibit degeneration of the stria vascularis, spiral ganglion cells, inner hair cells, and outer hair cells that is associated with the severity of hearing loss. This association has not been previously reported in studies that did not use quantitative methodologies for evaluating the cochlear elements and strict audiometric criteria for selecting cases. [source]


Linkage Validation of RP25 Using the 10K GeneChip Array and Further Refinement of the Locus by New Linked Families

ANNALS OF HUMAN GENETICS, Issue 4 2008
I. Barragán
Summary Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of retinal dystrophies, characterised by rod photoreceptor cell degeneration with autosomal recessive RP (arRP) as the commonest form worldwide. To date, a total of 26 loci have been reported for arRP, each having a prevalence of 1,5%, except for the RP25 locus which was identified as the genetic cause of 14% of arRP cases in Spain. In order to validate the original linkage of RP25, we undertook a total genome scan using the 10K GeneChip mapping array on three of the previously linked families. The data obtained supported the initial findings of linkage. Additionally, linkage analysis in 18 newly ascertained arRP families was performed using microsatellite markers spanning the chromosome 6p12.1-q15 interval. Five out of the 18 families showed suggestive evidence of linkage to RP25, hence supporting the high prevalence of this locus in the Spanish population. Furthermore, the finding of a crossover in one of these families is likely to have refined the disease interval from the original 16 cM to only a 2.67 cM region between D6S257 and D6S1557. [source]


Infancy is not a quiescent period of testicular development

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2001
Héctor E. Chemes
Postnatal evolution of the testis in most laboratory animals is characterized by the close continuity between neonatal activation and pubertal development. In higher primates, infancy, a long period of variable duration, separates birth from the beginning of puberty. This period has been classically considered as a quiescent phase of testicular development, but is actually characterized by intense, yet inapparent activity. Testicular volume increases vigorously shortly after birth and in early infancy due to the growth in length of seminiferous cords. This longitudinal growth results from active proliferation of infantile Sertoli cells which otherwise display a unique array of functional capabilities (oestrogen and anti-müllerian hormone secretion, increase of FSH receptors and maximal response to FSH). Leydig cells also show recrudescence after birth, possibly determined by an active gonadotrophic-testicular axis which results in increased testosterone secretion of uncertain functional role. This postnatal activation slowly subsides during late infancy when periodic phases of activation of the hypothalamo-pituitary-testicular axis are paralleled by incomplete spermatogenic spurts. The beginning of puberty is marked by the simultaneous reawakening of Leydig cell function and succeeding phases of germ cell differentiation/degeneration which ultimately lead to final spermatogenic maturation. The marked testicular growth in this stage is due to progressive increase at seminiferous tubule diameter. Sertoli cells, which have reached mitotic arrest, develop and differentiate, establishing the seminiferous tubule barrier, fluid secretion and lumen formation, and acquiring cyclic morphological and metabolic variations characteristic of the mature stage. All of these modifications indicate that, far from being quiescent, the testis in primates experiences numerous changes during infancy, and that the potential for pubertal development and normal adult fertility depends on the successful completion of these changes. [source]