Cell Death (cell + death)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Cell Death

  • activation-induced cell death
  • apoptotic cell death
  • autophagic cell death
  • cancer cell death
  • cause cell death
  • delayed cell death
  • dopaminergic cell death
  • excitotoxic cell death
  • extensive cell death
  • host cell death
  • increased cell death
  • induced cell death
  • inducing cell death
  • mediated cell death
  • necrotic cell death
  • neural cell death
  • neuronal cell death
  • non-apoptotic cell death
  • photoreceptor cell death
  • preventing cell death
  • programmed cell death
  • retinal cell death
  • significant cell death
  • stress-induced cell death
  • subsequent cell death
  • trigger cell death
  • white matter cell death

  • Terms modified by Cell Death

  • cell death induction
  • cell death mechanism
  • cell death pathway
  • cell death process
  • cell death program
  • cell death response

  • Selected Abstracts


    Stress-induced responses of human skin fibroblasts in vitro reflect human longevity

    AGING CELL, Issue 5 2009
    Pim Dekker
    Summary Unlike various model organisms, cellular responses to stress have not been related to human longevity. We investigated cellular responses to stress in skin fibroblasts that were isolated from young and very old subjects, and from offspring of nonagenarian siblings and their partners, representatives of the general population. Fibroblasts were exposed to rotenone and hyperglycemia and assessed for senescence-associated ,-galactosidase (SA-,-gal) activity by flow cytometry. Apoptosis/cell death was measured with the Annexin-V/PI assay and cell-cycle analysis (Sub-G1 content) and growth potential was determined by the colony formation assay. Compared with fibroblasts from young subjects, baseline SA-,-gal activity was higher in fibroblasts from old subjects (P = 0.004) as were stress-induced increases (rotenone: P < 0.001, hyperglycemia: P = 0.027). For measures of apoptosis/cell death, fibroblasts from old subjects showed higher baseline levels (Annexin V+/PI+ cells: P = 0.040, Sub-G1: P = 0.014) and lower stress-induced increases (Sub-G1: P = 0.018) than fibroblasts from young subjects. Numbers and total size of colonies under nonstressed conditions were higher for fibroblasts from young subjects (P = 0.017 and 0.006, respectively). Baseline levels of SA-,-gal activity and apoptosis/cell death were not different between fibroblasts from offspring and partner. Stress-induced increases were lower for SA-,-gal activity (rotenone: P = 0.064, hyperglycemia: P < 0.001) and higher for apoptosis/cell death (Annexin V+/PI, cells: P = 0.041, Annexin V+/PI+ cells: P = 0.008). Numbers and total size of colonies under nonstressed conditions were higher for fibroblasts from offspring (P = 0.001 and 0.024, respectively) whereas rotenone-induced decreases were lower (P = 0.008 and 0.004, respectively). These data provide strong support for the hypothesis that in vitro cellular responses to stress reflect the propensity for human longevity. [source]


    Response: Neuronal Cell Death and Status Epilepticus

    EPILEPSIA, Issue 3 2004
    Jan A. Gorter
    No abstract is available for this article. [source]


    Is the Cell Death in Mesial Temporal Sclerosis Apoptotic?

    EPILEPSIA, Issue 6 2003
    Hilmi Uysal
    Summary: Purpose: Mesial temporal sclerosis (MTS) is characterized by neuronal loss in the hippocampus. Studies on experimental models and patients with intractable epilepsy suggest that apoptosis may be involved in neuronal death induced by recurrent seizures. Methods: We searched evidence for apoptotic cell death in temporal lobes resected from drug-resistant epilepsy patients with MTS by using the terminal deoxynucleotidyl transferase (TdT) and digoxigenin-11-dUTP (TUNEL) method and immunohistochemistry for Bcl-2, Bax, and caspase-cleaved actin fragment, fractin. The temporal lobe specimens were obtained from 15 patients (six women and nine men; mean age, 29 ± 8 years). Results: Unlike that in normal adult brain, we observed Bcl-2 immunoreactivity in some of the remaining neurons dispersed throughout the hippocampus proper as well as in most of the reactive astroglia. Bax immunopositivity was increased in almost all neurons. Fractin immunostaining, an indicator of caspase activity, was detected in ,10% of these neurons. Des pite increased Bax expression and activation of caspases, we could not find evidence for DNA fragmentation by TUNEL staining. We also could not detect typical apoptotic changes in nuclear morphology by Hoechst-33258 or hematoxylin counterstaining. Conclusions: These data suggest that either apoptosis is not involved in cell loss in MTS, or a very slow rate of cell demise may have precluded detecting TUNEL-positive neurons dying through apoptosis. Increased Bax expression and activation of caspases support the latter possibility. [source]


    Intracellular Enzymatic Formation of Nanofibers Results in Hydrogelation and Regulated Cell Death,

    ADVANCED MATERIALS, Issue 20 2007
    M. Yang
    Enzymatic formation of supramolecular nanofibers is demonstrated as a novel approach to induce intracellular hydrogelation and control the fate of cells or cellular functions, which can lead to a new paradigm for developing biomaterials to manage cellular artificial nanostructures (CAN), understand cellular functions beyond the molecular level, and create novel therapeutics. [source]


    Yeast Programmed Cell Death: An Intricate Puzzle

    IUBMB LIFE, Issue 3 2005
    P. Ludovico
    Abstract Yeasts as eukaryotic microorganisms with simple, well known and tractable genetics, have long been powerful model systems for studying complex biological phenomena such as the cell cycle or vesicle fusion. Until recently, yeast has been assumed as a cellular 'clean room' to study the interactions and the mechanisms of action of mammalian apoptotic regulators. However, the finding of an endogenous programmed cell death (PCD) process in yeast with an apoptotic phenotype has turned yeast into an 'unclean' but even more powerful model for apoptosis research. Yeast cells appear to possess an endogenous apoptotic machinery including its own regulators and pathway(s). Such machinery may not exactly recapitulate that of mammalian systems but it represents a simple and valuable model which will assist in the future understanding of the complex connections between apoptotic and non-apoptotic mammalian PCD pathways. Following this line of thought and in order to validate and make the most of this promising cell death model, researchers must undoubtedly address the following issues: what are the crucial yeast PCD regulators? How do they play together? What are the cell death pathways shared by yeast and mammalian PCD? Solving these questions is currently the most pressing challenge for yeast cell death researchers.IUBMB Life, 57: 129-135, 2005 [source]


    Nitric Oxide, Mitochondria, and Cell Death

    IUBMB LIFE, Issue 3-5 2001
    Guy C. Brown
    Abstract NO or its derivatives (reactive nitrogen species: RNS) have three types of actions on mitochondria: 1) reversible inhibition of mitochondrial respiration at cytochrome oxidase by NO, and irreversible inhibition at multiple sites by RNS; 2) stimulation of mitochondrial production of superoxide, hydrogen peroxide, and peroxynitrite by NO; and 3) induction of mitochondrial permeability transition (MPT) by RNS. Similarly there are three main roles of mitochondria in NO-induced cell death: a) NO inhibition of respiration can induce necrosis (or excitotoxicity in neurons) and inhibit apoptosis if glycolysis is insufficient to compensate, b) RNS- or oxidant-induced signal transduction or DNA damage may activate the mitochondrial pathway to apoptosis, and c) RNS-induced MPT may induce apoptosis or necrosis. [source]


    Translational regulation in cell stress and apoptosis.

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2001
    Roles of the eIF4E binding proteins
    Abstract Several mechanisms have been identified by which protein synthesis may be regulated during the response of mammalian cells to physiological stresses and conditions that induce apoptotic cell death (reviewed in Clemens et al., Cell Death and Differentiation 7, 603,615, 2000). Recent developments allow us to up-date this analysis and in this article I concentrate on one particular aspect of this regulation that has not previously been reviewed in depth in relation to apoptosis, viz. the control of the initiation of protein synthesis by eukaryotic initiation factor eIF4E and the eIF4E binding proteins (4E-BPs). Changes in the state of phosphorylation of the 4E-BPs and in the extent of their association with eIF4E occur at an early stage in the response of cells to apoptotic inducers. The review discusses the mechanisms by which these events are regulated and the significance of the changes for the control of protein synthesis, cell proliferation and cell survival. [source]


    Starch Synthesis and Programmed Cell Death during Endosperm Development in Triticale (×Triticosecale Wittmack)

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 7 2010
    Chun-Yan Li
    Triticale (×Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source. Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase, soluble starch synthases, granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development. There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale. Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development. Dead cells within the endosperm were detected at 6 d post anthesis (DPA), and evidence of DNA fragmentation was first observed at 21 DPA. The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development. Cell death occurred stochastically throughout the whole endosperm, meanwhile, the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling. These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation. [source]


    A Nonfibrillar Form of the Fusogenic Prion Protein Fragment [118-135] Induces Apoptotic Cell Death in Rat Cortical Neurons

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
    Thierry Pillot
    Abstract: Neuronal loss is a salient feature of prion diseases.However, its cause and mechanism, particularly its relationship with theaccumulation and precipitation of the pathogenic, protease-resistant isoformPrPSc of the cellular prion protein PrPC, are still anenigma. Several studies suggest that neuronal loss could occur through aprocess of programmed cell death, which is consistent with the lack ofinflammation in these conditions. By analogy with the pathological eventsoccurring during the development of Alzheimer's disease, controversies stillexist regarding the relationship between amyloidogenesis, prion aggregation,and neuronal loss. We recently demonstrated that a prion protein fragment(118-135) displayed membrane-destabilizing properties and was able to induce,in a nonfibrillar form, the fusion of unilamellar liposomes. To unravel themechanism of prion protein neurotoxicity, we characterize the effects of thehuman Pr[118-135] peptide on rat cortical neurons. We demonstrate that lowconcentrations of the Pr[118-135] peptide, in a nonfibrillar form, induce atime- and dose- dependent apoptotic cell death, including caspase activation,DNA condensation, and fragmentation. This toxicity might involve oxidativestress, because antioxidant molecules, such as probucol and propyl gallate,protect neurons against prion peptide toxicity. By contrast, a nonfusogenicvariant Pr[118-135, 0°] peptide, which displays the same amino acidcomposition but several amino acid permutations, is not toxic to corticalneurons, which emphasizes the critical role of the fusogenic properties of theprion peptide in its neurotoxicity. Taken together, our results suggest thatthe interaction between the Pr[118-135] peptide and the plasma membrane ofneurons might represent an early event in a cascade leading toneurodegeneration. [source]


    Pregnenolone Sulfate, a Naturally Occurring Excitotoxin Involved in Delayed Retinal Cell Death

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
    C. Cascio
    Abstract: The present study was designed to investigate the neurosteroid pregnenolone sulfate (PS), known for its ability to modulate NMDA receptors and interfere with acute excitotoxicity, in delayed retinal cell death. Three hours after exposure of the isolated and intact retina to a 30-min PS pulse, DNA fragmentation as assessed by genomic DNA gel electrophoresis and a modified in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method appeared concurrently with an increase in superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) levels. At 7 h, the increased amount of DNA laddering was accompanied by a higher number of TUNEL-positive cells in the inner nuclear and ganglion cell layers. Necrotic signs were characterized by DNA smear migration, lactate dehydrogenase (LDH) release, and damage mainly in the inner nuclear layer. PS-induced delayed cell death was markedly reduced by the NMDA receptor antagonists 4-(3-phosphonopropyl)-2-piperazinecarboxylic acid and 3,-hydroxy-5,-pregnan-20-one sulfate but completely blocked after concomitant addition of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Steroids with antioxidant properties (progesterone, dehydroepiandrosterone and its sulfate ester, and 17,-estradiol) differently prevented PS-induced delayed cell death. Cycloheximide treatment protected against DNA fragmentation and LDH release but failed to prevent the rise in SOD activity and TBARS level. We conclude that a brief PS pulse causes delayed cell death in a slowly evolving apoptotic fashion characterized by a cycloheximide-sensitive death program downstream of reactive oxygen species generation and lipid peroxidation, turning into secondary necrosis in a retinal cell subset. [source]


    Hypoxia-Induced Apoptotic Cell Death is Prevented by Oestradiol Via Oestrogen Receptors in the Developing Central Nervous System

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2008
    V. M. Pozo Devoto
    The neuroprotective effects of oestrogens have been demonstrated against a variety of insults, including excitotoxicity, oxidative stress and cerebral ischemia under certain conditions. However, the molecular mechanisms underlying oestrogen neuroprotection are still unclear. We aimed to determine whether 17,-oestradiol (E2) administration post-hypoxia (p-hx) was neuroprotective and whether these actions were mediated through oestrogen receptors (ER). For this purpose, 12-embyonic day-old chickens were subjected to acute hypoxia [8% (O2), 60 min], followed by different reoxygenation periods. To test the neuroprotective effect of E2 and its mechanism, embryos were injected 30 min after the end of hypoxia with E2 alone or with ICI 182 780, a competitive antagonist of ER. Cytochrome c (cyt c) release, an indicator of mitochondrial apoptotic pathway, was measured by western blot in optic lobe cytosolic extracts. DNA fragmentation by TUNEL fluorescence and caspase-3 fragmentation by immunofluorescence were detected on optic lobe sections. Acute hypoxia produces a significant increase in cyt c release from mitochondria at 4 h p-hx, followed by an increase in TUNEL positive cells 2 h later (6 h p-hx). Administration of E2 (0.5 mg/egg) produced a significant decrease in cytosolic cyt c levels at 4 h p-hx, in casapse-3 activation and in TUNEL positive cells at 6 h p-hx compared to vehicle treated embryos. In the E2 -ICI 182 780 treated embryos, cyt c release, caspase-3 fragmentation and TUNEL positive cells were similar to the hypoxic embryos, thus suggesting the requirement of an E2,ER interaction for E2 mediated neuroprotective effects. In conclusion, E2 prevents hypoxia-induced cyt c release and posterior cell death and these effects are mediated by oestrogen receptors. [source]


    Alternaria alternata AT Toxin Induces Programmed Cell Death in Tobacco

    JOURNAL OF PHYTOPATHOLOGY, Issue 10 2009
    Elena T. Yakimova
    Abstract Detached tobacco leaves were infiltrated with an AT toxin preparation from the foliar pathogen Alternaria alternata tobacco pathotype. The AT toxin preparation caused formation of necrotic lesions within 5 days post-infiltration in a concentration-dependent manner. Cell death was accompanied by increased levels of the stress metabolites hydrogen peroxide, malondialdehyde, free proline and by enhanced total protease activity. Lesion development and the production of stress metabolites were suppressed if the infiltration site was pre-infiltrated with caspase-specific peptide inhibitors (irreversible caspase-1 inhibitor acyl-Tyr-Val-Ala-Asp-chloromethylketone (Ac-YVAD-CMK) and the broad range caspase inhibitor benzyoxycarbonyl-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp-CH2-DCB)), the serine protease inhibitor N,-p-tosyl- l -lysine chloromethylketone and the polyamine spermine. Extensive accumulation of reactive oxygen species (ROS), as determined by staining with 3-3,-diaminobenzidine and 2,,7,-dichlorofluorescein diacetate, was found in the AT toxin-challenged lesions. The data show that AT toxin-induced cell death in tobacco is a type of programmed cell death in which caspase-like proteases and ROS signalling play a prominent role. [source]


    Akt1-mediated Intracellular Oxidation after UVB Irradiation Suppresses Apoptotic Cell Death Induced by Cell Detachment and Serum Starvation

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2008
    Yuko Ibuki
    Apoptosis is an important cell death system that deletes damaged and mutated cells to prevent cancer. We have previously reported that a certain dose of UVB irradiation inhibited the apoptosis induced by serum starvation and cell detachment, leading to cell transformation. This antiapoptotic effect was partially inhibited by phosphatidylinositol 3-kinase (PI3-kinase) inhibitors. UVB irradiation is known to cause the phosphorylation of Akt via the activation of PI3-kinase; however, the Akt isoform-specific relationship has not yet been clarified. Notably, the role in antiapoptotic effect of UVB has yet to be elucidated. In this study, the role of Akt1 in the UVB-induced inhibition of apoptosis was examined by Akt1 knockdown using small interfering RNA (siRNA). NIH3T3 cells showed typical apoptotic cell death by serum starvation and cell detachment, which was significantly inhibited by UVB irradiation. Akt1 knockdown decreased the antiapoptotic effect of UVB. Hydrogen peroxide-induced suppression of cell death was also decreased in Akt1 knockdown cells. An antioxidant, N -acetylcysteine, inhibited the antiapoptotic effect by UVB irradiation, whereas no inhibition was observed in Akt1 knockdown cells. Furthermore, UVB-induced intracellular peroxidation was not observed in the knockdown cells, indicating that Akt1 played an important role in mediating the intracellular redox status. Treatment with insulin had a similar antiapoptotic effect as UVB irradiation involving intracellular peroxidation, which was also attenuated in Akt1 knockdown cells. These findings suggest that appropriate intracellular oxidation after UVB irradiation prevented apoptosis, a process which might be partially regulated by the production of reactive oxygen species mediated by Akt1. [source]


    Generation of NO by Bystander Human CD8 T Cells Augments Allogeneic Responses by Inhibiting Cytokine Deprivation-Induced Cell Death

    AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2009
    J. C. Choy
    Nitric oxide (NO), generated by inducible NO synthase (iNOS) in bystander human CD8 T cells, augments the accumulation of allogeneically activated human CD8 T cells in vitro and in vivo. Here, we report that iNOS-derived NO does not affect T-cell proliferation but rather inhibits cell death of activated human CD8 T cells after activation by allogeneic endothelial cells in culture. Exogenous NO did not affect activation-induced cell death of human CD8 T cells but specifically reduced death of activated T cells due to cytokine deprivation. NO-mediated inhibition of T-cell death did not involve cGMP signaling, and NO did not affect the expression of Bcl-2-related proteins known to regulate cytokine deprivation-induced cell death. However, NO inhibited the activity of caspases activated as a consequence of cytokine deprivation in activated T cells. This protective effect correlated with S-nitrosylation of caspases and was phenocopied by z-VAD.fmk and z-LEHD.fmk, pharmacological inhibitors of caspases. In summary, our findings indicate that NO augments the accumulation of activated human T cells principally by inhibiting cytokine deprivation-induced cell death through S-nitrosylation of caspases. [source]


    Extracts Of Actinobacillus Actinomycetemcomitans Induce Apoptotic Cell Death In Human Osteoblastic MG63 Cells

    AUSTRALIAN ENDODONTIC JOURNAL, Issue 1 2000
    Article first published online: 11 FEB 2010
    No abstract is available for this article. [source]


    Analysis of Gene Expression in Parkinson's Disease: Possible Involvement of Neurotrophic Support and Axon Guidance in Dopaminergic Cell Death

    BRAIN PATHOLOGY, Issue 1 2009
    Koen Bossers
    Abstract Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. We have studied alterations in gene expression in the substantia nigra, the caudate nucleus and putamen of four PD patients and four matched controls using custom designed Agilent microarrays. To gain insight into changes in gene expression during early stages of dopaminergic neurodegeneration, we selectively investigated the relatively spared parts of the PD substantia nigra, and correlated gene expression changes with alterations in neuronal density. We identified changes in the expression of 287 transcripts in the substantia nigra, 16 transcripts in the caudate nucleus and four transcripts in the putamen. For selected transcripts, transcriptional alterations were confirmed with qPCR on a larger set of seven PD cases and seven matched controls. We detected concerted changes in functionally connected groups of genes. In the PD substantia nigra, we observed strong evidence for a reduction in neurotrophic support and alterations in axon guidance cues. As the changes occur in relatively spared parts of the PD substantia nigra, they suggest novel disease mechanisms involving neurotrophic support and axon guidance in early stages of cellular stress events, ultimately leading to dopaminergic cell death in PD. [source]


    Phosphorylated Map Kinase (ERK1, ERK2) Expression is Associated with Early Tau Deposition in Neurones and Glial Cells, but not with Increased Nuclear DNA Vulnerability and Cell Death, in Alzheimer Disease, Pick's Disease, Progressive Supranuclear Palsy and Corticobasal Degeneration

    BRAIN PATHOLOGY, Issue 2 2001
    I. Ferrer
    Abnormal tau phosphorylation and deposition in neurones and glial cells is one of the major features in tau pathies. The present study examines the involvement of the Ras/MEK/ERK pathway of tau phosphorylation in Alzheimer disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), by Western blotting, single and double-labelling immunohistochemistry, and p21Ras activation assay. Since this pathway is also activated in several paradigms of cell death and cell survival, activated ERK expression is also analysed with double-labelling immunohistochemistry and in situ end-labelling of nuclear DNA fragmentation to visualise activated ERK in cells with increased nuclear DNA vulnerability. The MEK1 antibody recognises one band of 45 kD that identifies phosphorylation-independent MEK1, whose expression levels are not modified in diseased brains. The ERK antibody recognises one band of 42 kD corresponding to the molecular weight of phosphorylation-independent ERK2; the expression levels, as well as the immunoreactivity of ERK in individual cells, is not changed in AD, PiD, PSP and CBD. The antibody MAPK-P distinguishes two bands of 44 kD and 42 kD that detect phosphorylated ERK1 and ERK2. MAPK-P expression levels, as seen with Western blotting, are markedly increased in AD, PiD, PSP and CBD. Moreover, immunohistochemistry discloses granular precipitates in the cytoplasm of neurones in AD, mainly in a subpopulation of neurones exhibiting early tau deposition, whereas neurones with developed neurofibrillary tangles are less commonly immunostained. MAPK-P also decorates neurones with Pick bodies in PiD, early tau deposition in neurones in PSP and CBD, and cortical achromatic neurones in CBD. In addition, strong MAPK-P immunoreactivity is found in large numbers of tau -positive glial cells in PSP and CBD, as seen with double-labelling immunohistochemistry. Yet no co-localisation of enhanced phosphorylated ERK immunoreactivity and nuclear DNA fragmentation is found in AD, PiD, PSP and CBD. Finally, activated Ras expression levels are increased in AD cases when compared with controls. These results demonstrate increased phosphorylated (active) ERK expression in association with early tau deposition in neurones and glial cells in taupathies, and suggest activated Ras as the upstream activator of the MEK/ERK pathway of tau phosphorylation in AD. [source]


    Neuronal FasL Induces Cell Death of Encephalitogenic T Lymphocytes

    BRAIN PATHOLOGY, Issue 3 2000
    A. Flügel
    Apoptosis of inflammatory cells plays a crucial role in the recovery from autoimmune CNS disease. However, the underlying mechanisms of apoptosis induction are as yet ill-defined. Here we report on the neuronal expression of FasL and its potential function in inducing T-cell apoptosis. Using a combination of facial nerve axotomy and passive transfer encephalomyelitis, the fate of CD4+ encephalitogenic T cells engineered to express the gene for green fluorescent protein was followed. FasL gene transcripts and FasL protein were detected in neurons by in situ -hybridization and immunohistochemistry. T cells infiltrating preferentially the injured brain parenchyma were found in the immediate vicinity of FasL expressing neurons and even inside their perikarya. In contrast to neurons, T cells rapidly underwent apoptosis. In co-cultures of hippocampal nerve cells and CD4+ T lymphocytes, we confirmed expression of FasL in neurons and concomitant induction of T-cell death. Antibodies blocking neuronal FasL were shown to have a protective effect on T-cell survival. Thus, FasL expression by neurons in neuroinflammatory diseases may constitute a pivotal mechanism underlying apoptosis of encephalitogenic T cells. [source]


    Geranylgeraniol, an Intermediate Product in Mevalonate Pathway, Induces Apoptotic Cell Death in Human Hepatoma Cells: Death Receptor-independent Activation of Caspase-8 with Down-regulation of Bcl-xL Expression

    CANCER SCIENCE, Issue 9 2001
    Yoshio Takeda
    Geranylgeraniol (GGOH), an intermediate of mevalonate metabolism, is known to induce apoptosis in various lines of cancer cells. The present study was undertaken to clarify the signaling pathways of apoptosis induced by GGOH in human hepatoma cells. HuH-7 human hepatoma cells were incubated in the absence or presence of GGOH. Activation of caspase-8/-9/-3 in HuH-7 cells was found after 8 h treatment with GGOH, at which tune DNA fragmentation and loss of mitochondrial transmembrane potential (,,m) occurred. HuH-7 cells do not express Bcl-2; however, down-regulation of Bcl-xL expression preceded activation of the caspase cascade in GGOH-treated HuH-7 cells, while Bax expression was not changed by GGOH treatment. Addition of caspase inhibitors restored the decreased cell viability of HuH-7 cells by GGOH, including ,,m, to the baseline level, which indicated that caspase triggers mitochondria-dependent apoptotic pathways in GGOH-treated HuH-7 cells. Similarly, GGOH-mediated apoptosis of HuH-7 cells was clearly prevented by coadministration of ursodeoxycholic acid (UDCA), which led to restoration of the level of Bcl-xL expression. Activation of caspase-8/-9/-3, as well as ,,m, by GGOH treatment was suppressed by addition of UDCA. Our results indicate that activation of the caspase cascade initiating from caspase-8, which could be accelerated by down-regulation of Bcl-xL expression, plays a key role in an apoptotic process induced by GGOH in human hepatoma cells. [source]


    Effects Of The Na+/H+ Exchange Inhibitor Cariporide (HOE 642) On Cardiac Function And Cardiomyocyte Cell Death In Rat Ischaemic,Reperfused Heart

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2000
    Hajime Otani
    SUMMARY 1. Na+/H+ exchange has been implicated in the mechanism of reperfusion injury. We examined the effects of the cardiac-specific Na+/H+ exchange inhibitor cariporide (HOE 642) on postischaemic recovery of cardiac function and cardiomyocyte cell death (i.e. necrosis and apoptosis). 2. Rat isolated and buffer-perfused hearts were subjected to 25 min normothermic global ischaemia followed by 120 min reperfusion. Cariporide (10 ,mol/L) or its vehicle (0.01% dimethylsulphoxide) was administered for 15 min before ischaemia and for the first 30 min after reperfusion. 3. Cariporide significantly improved the recovery of isovolumic left ventricular function (heart rate, left ventricular developed pressure and left ventricular end-diastolic pressure) and coronary flow throughout reperfusion. Creatine kinase release during reperfusion was significantly less in the cariporide-treated heart. In situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL)- positive cardiomyocytes were also significantly less in the cariporide-treated heart after 120 min reperfusion. Electron microscopy showed necrotic changes without typical apoptotic features in cardiomyocytes after reperfusion. Such necrotic changes were mitigated by cariporide. Simultaneous detection of necrotic and apoptotic cardiomyocytes using propidium iodide (PI) and Annexin V revealed that cardiomyocytes in the infarct area were stained with only PI or both PI and Annexin V. Cariporide did not alter the pattern of cardiomyocyte staining with PI and Annexin V, although the number of cardiomyocytes stained with PI or PI plus Annexin V was less than that in vehicle-treated hearts. 4. These results suggest that apoptosis is not a major manifestation of cardiomyocyte cell death in the ischaemic, reperfused myocardium and a cariporide-sensitive mechanism of reperfusion injury promotes both necrotic and apoptotic processes of cell death. [source]


    Cell death in normal and abnormal development

    CONGENITAL ANOMALIES, Issue 1 2008
    Philip E. Mirkes
    ABSTRACT Research over the past 50 years has consistently documented that cell death is an integral part of both normal development and the etiology of birth defects; however, the significance of this cell death has been, until recently, unclear. Research published during the past 15 years has now shown that programmed cell death (PCD) and teratogen-induced cell death are genetically controlled processes (apoptosis) that play important roles in both normal and abnormal development. Therefore, the purpose of this review is to highlight what is known about PCD and teratogen-induced cell death and their relationships to the mechanisms of apoptosis and abnormal development. [source]


    Arsenic induces caspase- and mitochondria-mediated apoptosis in Saccharomyces cerevisiae

    FEMS YEAST RESEARCH, Issue 6 2007
    Li Du
    Abstract In recent years, it has been shown that yeast, a unicellular organism, undergoes apoptosis in response to various factors. Here we demonstrate that the highly effective anticancer agent arsenic induces apoptotic process in yeast cells. Reactive oxygen species (ROS) production was observed in the process. Moreover, mitochondrial membrane potential decreased after arsenic treatment. Resistance of the rho0 mutant strain (lacking mtDNA) to arsenic provides further evidence that this death process involves mitochondria. In addition, hypersensitivity of ,sod1 to arsenic suggests the critical role of ROS. Cell death and DNA fragmentation decreased in a ,yca1 deletion mutant, indicating the participation of yeast caspase-1 protein in apoptosis. The implications of these findings for arsenic-induced apoptosis are discussed. [source]


    Phase II study of arsenic trioxide and ascorbic acid for relapsed or refractory lymphoid malignancies: a Wisconsin Oncology Network study,

    HEMATOLOGICAL ONCOLOGY, Issue 1 2009
    JE Chang
    Abstract Arsenic trioxide (As2O3) has established clinical activity in acute promyelocytic leukaemia and has pre-clinical data suggesting activity in lymphoid malignancies. Cell death from As2O3 may be the result of oxidative stress. Agents which deplete intracellular glutathione, such as ascorbic acid (AA), may potentiate arsenic-mediated apoptosis. This multi-institution phase II study investigated a novel dosing schedule of As2O3 and AA in patients with relapsed or refractory lymphoid malignancies. Patients received As2O3 0.25,mg/kg IV and AA 1000,mg IV for five consecutive days during the first week of each cycle followed by twice weekly infusions during weeks 2,6. Cycles were repeated every 8 weeks. The primary end point was objective response. In a subset of patients, sequential levels of intracellular glutathione and measures of Bcl-2 and Bax gene expression were evaluated in peripheral blood mononuclear cells during treatment. Seventeen patients were enrolled between March 2002 and February 2004. The median age was 71, and the majority of enrolled patients had non-Hodgkin's lymphoma (12/17). Sixteen patients were evaluable, and one patient with mantle cell lymphoma achieved an unconfirmed complete response after five cycles of therapy for an overall response rate of 6%. The trial, which had been designed as a two-stage study, was closed after the first stage analysis due to lack of activity. Haematologic toxicities were the most commonly reported events in this heavily pre-treated population, and comprised the majority of grade 3 and 4 toxicities. Intracellular depletion of glutathione was not consistently observed during treatment. As2O3 and AA in this novel dosing strategy was generally well tolerated but had limited activity in patients with relapsed and refractory lymphoid malignancies. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    PTD4-apoptin protein therapy inhibits tumor growth in vivo

    INTERNATIONAL JOURNAL OF CANCER, Issue 12 2009
    Jun Sun
    Abstract Apoptin protein harbors tumor-selective cell death activity, which makes it a potential anticancer therapy candidate. This study reports an apoptin therapy approach based on protein transduction domain 4 (PTD4)-mediated transduction of recombinant apoptin protein. In vitro, the PTD4-apoptin fusion protein is located in the nucleus and induces cell death in, e.g., human hepatocarcinoma HepG2 cells. In normal human L-02 hepatocytes, PTD4-apoptin protein retained mainly cytoplasmic and did not induce detectable levels of cell death, illustrating that the PTD4 domain does not affect apoptin's tumor-selective characteristics. In vivo, liver, cervix and gastric carcinoma xenografts treated with PTD4-apoptin protein for 6 days via the tumor epidermis exhibited a significant tumor growth inhibition because of apoptin-mediated cell death. In addition, treatment of human hepatocarcinoma xenografts during 3 weeks showed that PTD4-apoptin protein has significant anticancer activity, whereas control treatment with PTD4-enhanced green fluorescence protein or saline did not. Cell death and disruption of the tumor integrity were apparent in the PTD4-apoptin transduced xenografted tumors. As important, although PTD4-apoptin protein could be detected in the epidermal tissue covering the subcutaneous tumor tissue and in several organs, such as liver and brain, of the treated mice, no tissue disruption or signs of cell death could be detected. Our in vivo data reveal that apoptin protein delivery constitutes a novel powerful and safe anticancer therapy. © 2009 UICC [source]


    Opposite effects of uracil and adenine nucleotides on the survival of murine cardiomyocytes

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2008
    Alessia Mazzola
    Abstract We previously showed that the human heart expresses all known P2X and P2Y receptors activated by extra-cellular adenine or uracil nucleotides. Despite evidence that, both in humans and rodents, plasma levels of ATP and UTP markedly increase during myocardial infarction, the differential effects mediated by the various adenine- and uracil-preferring myocardial P2 receptors are still largely unknown. Here, we studied the effects of adenine and uracil nucleotides on murine HL-1 cardiomyocytes. RT-PCR analysis showed that HL-1 cardiomyocytes express all known P2X receptors (except for P2X2), as well as the P2Y2,4,6,14 subtypes. Exposure of cardiomyocytes to adenine nucleotides (ATP, ADP or BzATP) induced apoptosis and necrosis, as determined by flow-cytometry. Cell death was exacerbated by tumour necrosis factor (TNF)-,, a cytokine implicated in chronic heart failure progression. Conversely, uracil nucleotides (UTP, UDP and UDPglucose) had no effect ,per se', but fully counteracted the deleterious effects induced by adenine nucleotides and TNF-,, even if added to cardiomyocytes after beginning exposure to these cell death-inducing agents. Thus, exposure of cardiomyocytes to elevated concentrations of ATP or ADP in the presence of TNF-, contributes to cell death, an effect which is counteracted by uracil-preferring P2 receptors. Cardiomyocytes do not need to be ,primed' by uracil nucleotides to become insensitive to adenine nucleotides-induced death, suggesting the existence of a possible ,therapeutic' window for uracil nucleotides-mediated protection. Thus, release of UTP during cardiac ischaemia and in chronic heart failure may protect against myocardial damage, setting the basis for developing novel cardioprotective agents that specifically target uracil-preferring P2Y receptors. [source]


    Cell death in cell culture frame by frame: Spontaneous cell demise of a 3T3 fibroblast

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2003
    M. Leabu
    [source]


    Nuclear changes in necrotic HL-60 cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue S36 2001
    Roberta Bortul
    Abstract Cell death in eukaryotes can occur by either apoptosis or necrosis. Apoptosis is characterized by well-defined nuclear changes which are thought to be the consequence of both proteolysis and DNA fragmentation. On the other hand, the nuclear modifications that occur during necrosis are largely less known. Here, we have investigated whether or not nuclear modifications occur during ethanol-induced necrotic cell death of HL-60 cells. By means of immunofluorescence staining, we demonstrate that the patterns given by antibodies directed against some nuclear proteins (lamin B1, NuMA, topoisomerase II,, SC-35, B23/nucleophosmin) changed in necrotic cells. The changes in the spatial distribution of NuMA strongly resembled those described to occur during apoptosis. On the contrary, the fluorescent pattern characteristic for other nuclear proteins (C23/nucleolin, UBF, fibrillarin, RNA polymerase I) did not change during necrosis. By immunoblotting analysis, we observed that some nuclear proteins (SAF-A, SATB1, NuMA) were cleaved during necrosis, and in the case of SATB1, the apoptotic signature fragment of 70 kDa was also present to the same extent in necrotic samples. Caspase inhibitors did not prevent proteolytic cleavage of the aforementioned polypeptides during necrosis, while they were effective if apoptosis was induced. In contrast, lamin B1 and topoisomerase II, were uncleaved in necrotic cells, whereas they were proteolyzed during apoptosis. Transmission electron microscopy analysis revealed that slight morphological changes were present in the nuclear matrix fraction prepared from necrotic cells. However, these modifications (mainly consisting of a rarefaction of the inner fibrogranular network) were not as striking as those we have previously described in apoptotic HL-60 cells. Taken together, our results indicate that during necrosis marked biochemical and morphological changes do occur at the nuclear level. These alterations are quite distinct from those known to take place during apoptosis. Our results identify additional biochemical and morphological criteria that could be used to discriminate between the two types of cell death. J. Cell. Biochem. Suppl. 36: 19,31, 2001. © 2001 Wiley-Liss, Inc. [source]


    Role of calcium and ROS in cell death induced by polyunsaturated fatty acids in murine thymocytes

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2010
    Aparna Prasad
    We investigated the mechanisms whereby omega-3 and -6 polyunsaturated fatty acids (PUFAs) cause cell death of mouse thymocytes using flow cytometry, focusing on the respective roles of intracellular calcium concentration, [Ca2+]i and reactive oxygen species (ROS). We applied the C-22, 20, and 18 carbon omega-3 (DHA, EPA, ALA) and omega-6 (DTA, ARA, and LNA) fatty acids to isolated thymocytes and monitored cell death using the DNA-binding dye, propidium iodide. When applied at 20,µM concentration, omega-3 fatty acids killed thymocytes over a period of 1,h with a potency of DHA,>,EPA,>,ALA. The omega-6 PUFAs were more potent. The C18 omega-6 fatty acid, LNA, was the most potent, followed by DHA and ARA. Cell death was always accompanied by an increase in the levels of [Ca2+]i and ROS. Both increases were in proportion to the potency of the PUFAs in inducing cell death. Removing extracellular calcium did not prevent the elevation in [Ca2+]i nor cell death. However, the intracellular calcium chelator, BAPTA, almost totally reduced both the elevation in [Ca2+]i and cell death, while vitamin E reduced the elevation in ROS and cell death. BAPTA also prevented the elevation in ROS, but vitamin E did not prevent the elevation in [Ca2+]i. Thapsigargin, which depletes endoplasmic reticulum calcium, blocked the elevation in [Ca2+]i, but CCCP, a mitochondrial calcium uptake inhibitor, did not. These results suggest that the six PUFAs we studied kill thymocytes by causing release of calcium from endoplasmic reticulum, which causes release of ROS from mitochondria which leads to cell death. J. Cell. Physiol. 225: 829,836, 2010. © 2010 Wiley-Liss, Inc. [source]


    Dose-dependent effect of S(+) ketamine on post-ischemic endogenous neurogenesis in rats

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2009
    U. WINKELHEIDE
    Background: Ketamine is a non-competitive antagonist at N -methyl- d -aspartate (NMDA) receptors and reduces neuronal injury after cerebral ischemia by blocking the excitotoxic effects of glutamate. However, cerebral regeneration by means of endogenous neurogenesis may be impaired with blockade of NMDA receptors. The effects of S(+) ketamine on post-ischemic neurogenesis are unknown and investigated in this study. Methods: Thirty-two male Sprague,Dawley rats were randomly assigned to the following treatment groups with intravenous S(+) ketamine anesthesia: S(+) ketamine 0.75 mg/kg/min with or without cerebral ischemia and S(+) ketamine 1.0 mg/kg/min with or without cerebral ischemia. Eight non-anesthetized, non-ischemic animals were investigated as naïve controls. Forebrain ischemia was induced by bilateral common carotid artery occlusion in combination with hemorrhagic hypotension. 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally for seven consecutive post-operative days. BrdU-positive neurons in the dentate gyrus and histopathological damage of the hippocampus were analyzed after 28 days. Results: The number of new neurons was not affected by S(+) ketamine in the absence of cerebral ischemia. The ischemia-induced increase in neurogenesis was reduced by high-dose S(+) ketamine. Cell death of ischemic animals did not vary between low- and high-dose S(+) ketamine. Conclusion: While low concentrations of S(+) ketamine allow an ischemia-induced increase in the number of new neurons, high S(+) ketamine concentrations block the post-ischemic increase in newly generated neurons. This effect is irrespective of the extent of other histopathological damage and in line with studies showing that NMDA receptor antagonists like MK-801 inhibit neurogenesis after cerebral ischemia. [source]


    Starch Synthesis and Programmed Cell Death during Endosperm Development in Triticale (×Triticosecale Wittmack)

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 7 2010
    Chun-Yan Li
    Triticale (×Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source. Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase, soluble starch synthases, granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development. There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale. Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development. Dead cells within the endosperm were detected at 6 d post anthesis (DPA), and evidence of DNA fragmentation was first observed at 21 DPA. The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development. Cell death occurred stochastically throughout the whole endosperm, meanwhile, the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling. These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation. [source]