Cell Culture Conditions (cell + culture_condition)

Distribution by Scientific Domains


Selected Abstracts


A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells

BIOTECHNOLOGY & BIOENGINEERING, Issue 6 2009
Rachel Legmann
Abstract Multi-factorial experimentation is essential in understanding the link between mammalian cell culture conditions and the glycoprotein product of any biomanufacturing process. This understanding is increasingly demanded as bioprocess development is influenced by the Quality by Design paradigm. We have developed a system that allows hundreds of micro-bioreactors to be run in parallel under controlled conditions, enabling factorial experiments of much larger scope than is possible with traditional systems. A high-throughput analytics workflow was also developed using commercially available instruments to obtain product quality information for each cell culture condition. The micro-bioreactor system was tested by executing a factorial experiment varying four process parameters: pH, dissolved oxygen, feed supplement rate, and reduced glutathione level. A total of 180 micro-bioreactors were run for 2 weeks during this DOE experiment to assess this scaled down micro-bioreactor system as a high-throughput tool for process development. Online measurements of pH, dissolved oxygen, and optical density were complemented by offline measurements of glucose, viability, titer, and product quality. Model accuracy was assessed by regressing the micro-bioreactor results with those obtained in conventional 3,L bioreactors. Excellent agreement was observed between the micro-bioreactor and the bench-top bioreactor. The micro-bioreactor results were further analyzed to link parameter manipulations to process outcomes via leverage plots, and to examine the interactions between process parameters. The results show that feed supplement rate has a significant effect (P,<,0.05) on all performance metrics with higher feed rates resulting in greater cell mass and product titer. Culture pH impacted terminal integrated viable cell concentration, titer and intact immunoglobulin G titer, with better results obtained at the lower pH set point. The results demonstrate that a micro-scale system can be an excellent model of larger scale systems, while providing data sets broader and deeper than are available by traditional methods. Biotechnol. Bioeng. 2009; 104: 1107,1120. © 2009 Wiley Periodicals, Inc. [source]


Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method

BIOTECHNOLOGY PROGRESS, Issue 1 2010
Zizhuo Xing
Abstract Markov chain Monte Carlo (MCMC) method was applied to model kinetics of a fed-batch Chinese hamster ovary cell culture process in 5,000-L bioreactors. The kinetic model consists of six differential equations, which describe dynamics of viable cell density and concentrations of glucose, glutamine, ammonia, lactate, and the antibody fusion protein B1 (B1). The kinetic model has 18 parameters, six of which were calculated from the cell culture data, whereas the other 12 were estimated from a training data set that comprised of seven cell culture runs using a MCMC method. The model was confirmed in two validation data sets that represented a perturbation of the cell culture condition. The agreement between the predicted and measured values of both validation data sets may indicate high reliability of the model estimates. The kinetic model uniquely incorporated the ammonia removal and the exponential function of B1 protein concentration. The model indicated that ammonia and lactate play critical roles in cell growth and that low concentrations of glucose (0.17 mM) and glutamine (0.09 mM) in the cell culture medium may help reduce ammonia and lactate production. The model demonstrated that 83% of the glucose consumed was used for cell maintenance during the late phase of the cell cultures, whereas the maintenance coefficient for glutamine was negligible. Finally, the kinetic model suggests that it is critical for B1 production to sustain a high number of viable cells. The MCMC methodology may be a useful tool for modeling kinetics of a fed-batch mammalian cell culture process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Glycoform characterization of erythropoietin combining glycan and intact protein analysis by capillary electrophoresis , electrospray , time-of-flight mass spectrometry

ELECTROPHORESIS, Issue 13 2006
Elvira Balaguer
Abstract Glycosylation of recombinant human erythropoietin (rHuEPO) is a post-translational process that alters biological activity, solubility and lifetime of the glycoprotein in blood, and strongly depends on the type of cell and the cell culture conditions. A fast and simple method providing extensive carbohydrate information about the glycans present in rHuEPO and other glycoproteins is needed in order to improve current methods in drug development or product quality control. Here, an improved method for intact rHuEPO glycoform characterization by CZE-ESI-TOF MS has been developed using a novel capillary coating and compared to a previous study. Both methods allow a fast separation in combination with accurate mass characterization of the single protein isoforms. The novel dynamic coating provides a separation at an EOF close to zero, enabling better separation. This results in an improved mass spectrometric resolution and the detection of minor isoforms. In order to assign an unequivocal carbohydrate composition to every intact glycoform, a CZE-ESI-MS separation method for enzymatically released underivatized N -glycans has been developed. The TOF,MS allows the correct identification of the glycans due to its high mass accuracy and resolution. Therefore, glycan modifications such as acetylation, oxidation, sulfation and even the exchange of OH by NH2 are successfully characterized. Information of the protein-backbone molecular mass has been combined with results from peptide analysis (revealing information about O -glycosylation) and from the glycan analysis, including the detection of as yet undescribed glycans containing four antennae and five sialic acids. This allows an unequivocal assignment of an overall glycosylation composition to the molecular masses obtained for the intact rHuEPO glycoforms. [source]


Stable Non-Covalent Large Area Patterning of Inert Teflon-AF Surface: A New Approach to Multiscale Cell Guidance,

ADVANCED ENGINEERING MATERIALS, Issue 6 2010
Francesco Valle
Micro- and nano-patterning of cell adhesion proteins is demonstrated to direct the growth of neural cells, viz. human neuroblastoma SHSY5Y, at precise positions on a strongly antifouling substrate of technolological interest. We adopt a soft-lithographic approach with oxygen plasma modified PDMS stamps to pattern human laminin on Teflon-AF films. These patterns are based on the interplay of capillary forces within the stamp and non-covalent intermolecular and surface interactions. Remarkably, they remain stable for several days upon cell culture conditions. The fabrication of substrates with adjacent antifouling and adhesion-promoting regions allows us to reach absolute spatial control in the positioning of neuroblastoma cells on the Teflon-AF films. This patterning approach of a technologically-relevant substrate can be of interest in tissue engineering and biosensing. [source]


Recombinant glycodelin carrying the same type of glycan structures as contraceptive glycodelin-A can be produced in human kidney 293 cellsbut not in Chinese hamster ovary cells

FEBS JOURNAL, Issue 15 2000
Ingrid M. Van den Nieuwenhof
We have produced human recombinant glycodelin in human kidney 293 cells and in Chinese hamster ovary (CHO) cells. Structural analyses by lectin immunoassays and fast atom bombardment mass spectrometry showed that recombinant human glycodelin produced in CHO cells contains only typical CHO-type glycans and is devoid of any of the N,N,- diacetyllactosediamine (lacdiNAc)-based chains previously identified in glycodelin-A (GdA). By contrast, human kidney 293 cells produced recombinant glycodelin with the same type of carbohydrate structures as GdA. The presence of a ,1,4- N- acetylgalactosaminyltransferase functioning in the synthesis of lacdiNAc-based glycans in human kidney 293 cells is concluded to be the cause of the occurrence of lacdiNAc-based glycans on glycodelin produced in these cells. Furthermore, human kidney 293 cells were found to be particularly suited for the production of recombinant glycodelin when they were cultured in high glucose media. Lowering the glucose concentration and the addition of glucosamine resulted in higher relative amounts of oligomannosidic-type glycans and complex glycans with truncated antennae. Human glycodelin is an attractive candidate for the development of a contraceptive agent, and this study gives valuable information for selecting the proper expression system and cell culture conditions for the production of a correctly glycosylated recombinant form. [source]


Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach

GENES TO CELLS, Issue 7 2010
Steffen M. Zeisberger
Establishment of fetal bovine serum (FBS)-free cell culture conditions is essential for transplantation therapies. Blood-derived endothelial colony-forming cells (ECFCs) are potential candidates for regenerative medicine applications. ECFCs were isolated from term umbilical cord blood units and characterized by flow cytometry, capillary formation and responsiveness to cytokines. ECFCs were expanded under standard, FBS-containing endothelial medium, or transferred to chemically defined endothelial media without FBS. Microarray expression profiling was applied to compare the transcriptome profiles in FBS-containing versus FBS-free culture. ECFC outgrowth in standard medium was successful in 92% of cord blood units. The karyotype of expanded ECFCs remained normal. Without FBS, ECFC initiation and expansion failed. Modest proliferation, changes in cell morphology and organization and cell death have been observed after passaging. Gene ontology analysis revealed a broad down-regulation of genes involved in cell cycle progression and up-regulation of genes involved in stress response and apoptosis. Interestingly, genes participating in lipid biosynthesis were markedly up-regulated. Detection of several endothelial cell-specific marker genes showed the maintenance of the endothelial cell characteristics during serum-free culture. Although ECFCs maintain their endothelial characteristics during serum-free culturing, they could not be expanded. Additional supply of FBS-free media with lipid concentrates might increase the ECFC survival. [source]


Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2002
Vassilios I. Sikavitsas
Abstract The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague,Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L -lactic- co -glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62: 136,148, 2002 [source]


Role of phospholipases A2 in growth-dependent changes in prostaglandin release from 3T6 fibroblasts

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2001
Teresa Sánchez
Previously, we reported a growth-dependent change in prostaglandin production as a consequence of a marked growth-dependent alteration in arachidonic acid (AA) mobilization from phospholipids. Our present results show that fetal calf serum (FCS) and 4,-phorbol-12-myristate acetate (PMA) caused an enhancement of phospholipase A2 (PLA2) activity in the membrane fraction of non-confluent cells allowing PLA2 access to its substrate and the release of AA. Western blot analysis has shown that FCS and PMA increased secreted PLA2 (sPLA2) expression in non-confluent 3T6 fibroblast cultures. Moreover, FCS and PMA induced dithiothreitol-sensitive and bromoenol lactone-sensitive PLA2 activities in cytosol and membrane fraction. However, these stimuli did not modify significantly the PLA2 activity in both fractions when 3T6 fibroblasts reached a high cell density. This could be associated with the impairment of AA mobilization in these cell culture conditions. On the other hand, we observed that FCS and PMA induced the same prostaglandin H synthase-2 induction in non-confluent and confluent culture conditions. Moreover, the prostaglandin E2 levels reached in cell culture supernatants were independent of the degree of confluence when AA was added exogenously. These results suggest that the changes of intracellular distribution of PLA2 activity of sPLA2 and iPLA2 stimulated by exogenous stimuli may be controlled by cell density conditions which constitute an important mechanism in the regulation of prostaglandin release.© 2001 Wiley-Liss, Inc. [source]


A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells

BIOTECHNOLOGY & BIOENGINEERING, Issue 6 2009
Rachel Legmann
Abstract Multi-factorial experimentation is essential in understanding the link between mammalian cell culture conditions and the glycoprotein product of any biomanufacturing process. This understanding is increasingly demanded as bioprocess development is influenced by the Quality by Design paradigm. We have developed a system that allows hundreds of micro-bioreactors to be run in parallel under controlled conditions, enabling factorial experiments of much larger scope than is possible with traditional systems. A high-throughput analytics workflow was also developed using commercially available instruments to obtain product quality information for each cell culture condition. The micro-bioreactor system was tested by executing a factorial experiment varying four process parameters: pH, dissolved oxygen, feed supplement rate, and reduced glutathione level. A total of 180 micro-bioreactors were run for 2 weeks during this DOE experiment to assess this scaled down micro-bioreactor system as a high-throughput tool for process development. Online measurements of pH, dissolved oxygen, and optical density were complemented by offline measurements of glucose, viability, titer, and product quality. Model accuracy was assessed by regressing the micro-bioreactor results with those obtained in conventional 3,L bioreactors. Excellent agreement was observed between the micro-bioreactor and the bench-top bioreactor. The micro-bioreactor results were further analyzed to link parameter manipulations to process outcomes via leverage plots, and to examine the interactions between process parameters. The results show that feed supplement rate has a significant effect (P,<,0.05) on all performance metrics with higher feed rates resulting in greater cell mass and product titer. Culture pH impacted terminal integrated viable cell concentration, titer and intact immunoglobulin G titer, with better results obtained at the lower pH set point. The results demonstrate that a micro-scale system can be an excellent model of larger scale systems, while providing data sets broader and deeper than are available by traditional methods. Biotechnol. Bioeng. 2009; 104: 1107,1120. © 2009 Wiley Periodicals, Inc. [source]


Microbioreactor array for full-factorial analysis of provision of multiple soluble factors in cellular microenvironments

BIOTECHNOLOGY & BIOENGINEERING, Issue 6 2009
Drew Titmarsh
Abstract We report a scalable microbioreactor architecture which uses nested dilution structures to generate a full-factorial array of cell culture conditions. The proof-of-concept microbioreactor array produces all combinations of three concentration levels of two soluble factors (32,=,9 unique conditions in total). The full-factorial design is especially useful in optimizing soluble factor treatments and elucidating interaction effects between factors which are otherwise difficult to deconvolute. By nesting hierarchical levels of dilution structures, and designing the device purely by resistive flow (no valves are required), suitable diffusive mixing of growth factors up to 40,kDa is achieved such that the nine culture conditions can be generated and maintained from a minimal number of stock solutions. Biotechnol. Bioeng. 2009; 104: 1240,1244. © 2009 Wiley Periodicals, Inc. [source]


pH measurement and a rational and practical pH control strategy for high throughput cell culture system

BIOTECHNOLOGY PROGRESS, Issue 3 2010
Haiying Zhou
Abstract The number of therapeutic proteins produced by cell culture in the pharmaceutical industry continues to increase. During the early stages of manufacturing process development, hundreds of clones and various cell culture conditions are evaluated to develop a robust process to identify and select cell lines with high productivity. It is highly desirable to establish a high throughput system to accelerate process development and reduce cost. Multiwell plates and shake flasks are widely used in the industry as the scale down model for large-scale bioreactors. However, one of the limitations of these two systems is the inability to measure and control pH in a high throughput manner. As pH is an important process parameter for cell culture, this could limit the applications of these scale down model vessels. An economical, rapid, and robust pH measurement method was developed at Eli Lilly and Company by employing SNARF-4F 5-(-and 6)-carboxylic acid. The method demonstrated the ability to measure the pH values of cell culture samples in a high throughput manner. Based upon the chemical equilibrium of CO2, HCO, and the buffer system, i.e., HEPES, we established a mathematical model to regulate pH in multiwell plates and shake flasks. The model calculates the required %CO2 from the incubator and the amount of sodium bicarbonate to be added to adjust pH to a preset value. The model was validated by experimental data, and pH was accurately regulated by this method. The feasibility of studying the pH effect on cell culture in 96-well plates and shake flasks was also demonstrated in this study. This work shed light on mini-bioreactor scale down model construction and paved the way for cell culture process development to improve productivity or product quality using high throughput systems. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Zebrafish embryo extracts promote sphere-forming abilities of human melanoma cell line

CANCER SCIENCE, Issue 8 2009
Yi-Rang Na
Sphere-forming abilities in culture condition are considered a hallmark of cancer stem-like cells, which represents tumor cell invasiveness and stem-like characteristics. We aimed to show that the sphere-forming subpopulation of human malignant melanoma cell line WM-266-4 acts differently to zebrafish embryo extracts compared with their bulk counterpart. Spheres were maintained in neural stem cell culture conditions. The embryos of zebrafish at specific developmental stages were collected and the extracts were purified under 100 kDa. Spheres were treated with embyo extracts and proliferation assay and immunocytochemistry were conducted. Spheroid cells expressed nestin and epidermal growth factor receptor (EGFR) but not melanoma antigen recognized by T-cells (MART)1, indicating their stem-like character. Zebrafish embryo extracts at 50% epiboly stage inhibited melanoma bulk cell proliferation in a dose-dependent manner. However, sphere-forming abilities were significantly enhanced under 1 µg/mL concentration of 50% epiboly stage embryo extract treatment. Our findings implicate that we should consider cell subsets of a different character from the tumor origin that can respond differently to exogenous substances or tumor microenvironments. We suggest that cancer research should consider both minor stem-like subpopulations and the other major bulk tumor cells. (Cancer Sci 2009) [source]