Cell Activity (cell + activity)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Cell Activity

  • bone cell activity
  • killer cell activity
  • natural killer cell activity
  • nk cell activity


  • Selected Abstracts


    Effects of Xenobiotic Compounds on Cell Activities in Euplotes crassus

    THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2005
    FRANCESCA TRIELLI
    It is now widely accepted that Protists are relevant bioassays to be exploited for the study of environmental modifications due to the presence of xenobiotic compounds. In this work, we evaluated the possibility of utilizing Euplotes crassus, an interstitial marine ciliate, for the pre-chemical screening of environmental sites, such as estuarine and coastal sediments. With this aim, we tested the sensitivity of E. crassus to exposure to three classes of pollutants: an organophosphate neurotoxic drug, basudin, largely used for pest control in agricultural sites, a toxic heavy metal, mercury (HgCl2), and an aromatic polycyclic hydrocarbon, benzopyrene (BP). We found a dose-dependent effect of these compounds on cell viability at concentrations ranging from 1/102 v/v to 1/107 v/v for basudin, from 5 ,M to 0.1 ,M for HgCl2, and from 50 ,M to 1 ,M for BP. In particular, 100% mortality was caused by a 1-h exposure to 1/105 v/v basudin, or 2 ,M HgCl2, or 25 ,M BP, and by a 24-h exposure to 1/106 v/v basudin, 0.5 ,M HgCl2, or 5 ,M BP. A significant decrease in the daily mean fission rate (P<0.001) was found after exposure to 1/107 v/v basudin, or 0.25 ,M HgCl2, or 1 ,M BP. Moreover, as it is well known that the inhibition of acetylcholinesterase (AChE) activity represents a specific biomarker for neurotoxic drugs, we first detected this enzyme activity in E. crassus, using cytochemical, spectrophotometric, and electrophoretic methods; then, AChE activity was characterized by its sensitivity to specific AChE inhibitors and to variations in pH and temperature. Like AChE present in higher organisms, the AChE activity detected in E. crassus was inhibited by exposure to basudin. Conversely, exposure to HgCl2, or PB did not inhibit AChE activity, but caused a significant reduction in lysosomal membrane stability. [source]


    High NK Cell Activity in Early Pregnancy Correlates with Subsequent Abortion with Normal Chromosomes in Women with Recurrent Abortion

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 2 2001
    Hideto Yamada
    PROBLEM: The aim of this study was to assess the role of natural killer (NK) cells in pregnant women with a history of recurrent spontaneous abortion (RSA). METHOD OF STUDY: Consecutive 66 pregnant women with a history of RSA were prospectively assessed for peripheral NK cell activity, percentage of the NK cell subsets, and subsequent pregnancy outcome. RESULTS: NK cell activity in women with subsequent live birth (group I) at 4,5 gestational weeks (GW) (mean±SD, 32.5±12.3%) significantly decreased at 6,7 GW (28.1±12.1%) and at 8,9 GW (28.0±11.8%). NK cell activity in women with subsequent abortion with normal chromosomes (group II) at 6,7 GW (41.2±19.0%) was significantly higher than that in group I women, while NK cell activity at 6,7 GW in women with subsequent abortion with abnormal chromosomes (group III) was the same as the level in group I women. CONCLUSIONS: High NK cell activity at 6,7 GW correlates with subsequent abortion with normal chromosomes. [source]


    Cellular mechanisms of cobalt-induced hippocampal epileptiform discharges

    EPILEPSIA, Issue 1 2009
    Jiwei He
    Summary Purpose:, To explore the cellular mechanisms of cobalt-induced epileptiform discharges in mouse hippocampal slices. Methods:, Hippocampal slices were prepared from adult mice and briefly exposed to a CoCl2 -containing external solution. Population and single cell activities were examined via extracellular and whole-cell patch recordings. Results:, Brief cobalt exposure induced spontaneous, ictal-like discharges originating from the CA3 area. These discharges were suppressed by anticonvulsants, gap junction blockers, or by raising extracellular Ca2+, but their generation was not associated with overall hyperexcitability or impairment in GABAergic inhibition in the CA3 circuit. Electroencephalographic ictal discharges of similar waveforms were observed in behaving rats following intrahippocampal cobalt infusion. Discussion:, Mechanisms involving activity-dependent facilitation of gap junctional communication may play a major role in cobalt-induced epileptiform discharges. [source]


    Plasticity of hair follicle dermal cells in wound healing and induction

    EXPERIMENTAL DERMATOLOGY, Issue 2 2003
    A. Gharzi
    Abstract: The capacity of adult hair follicle dermal cells to participate in new follicle induction and regeneration, and to elicit responses from diverse epithelial partners, demonstrates a level of developmental promiscuity and influence far exceeding that of interfollicular fibroblasts. We have recently suggested that adult follicle dermal cells have extensive stem or progenitor cell activities, including an important role in skin dermal wound healing. Given that up to now tissue engineered skin equivalents have several deficiencies, including the absence of hair follicles, we investigated the capacity of follicle dermal cells to be incorporated into skin wounds; to form hair follicles in wound environments; and to create a hair follicle-derived skin equivalent. In our study, we implanted rat follicle dermal cells labelled with a vital dye into ear and body skin wounds. We found that they were incorporated into the new dermis in a manner similar to skin fibroblasts, but that lower follicle dermal sheath also assimilated into hair follicles. Using different combinations of follicle dermal cells and outer root sheath epithelial cells in punch biopsy wounds, we showed that new hair follicles were formed only with the inclusion of intact dermal papillae. Finally by combining follicle dermal sheath and outer root sheath cells in organotypic chambers, we created a skin equivalent with characteristic dermal and epidermal architecture and a normal basement membrane , the first skin to be produced entirely from hair follicle cells. These data support the hypothesis that follicle dermal cells may be important in wound healing and demonstrate their potential usefulness in human skin equivalents and skin substitutes. While we have made progress towards producing skin equivalents that contain follicles, we suggest that the failure of cultured dermal papilla cells to induce follicle formation in wounds illustrates the complex role the follicle dermis may play in skin. We believe that it demonstrates a genuine dichotomy of activity for follicle cells within skin. [source]


    Environmental Toxicants May Modulate Osteoblast Differentiation by a Mechanism Involving the Aryl Hydrocarbon Receptor,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2007
    Elizabeth P Ryan
    Abstract The AHR mediates many of the toxicological effects of aromatic hydrocarbons. We show that AHR expression in osteoblasts parallels the induction of early bone-specific genes involved in maturation. The AHR may not only mediate the effects of toxicants, but with an as yet unidentified ligand, be involved in the differentiation pathways of osteoblasts. Introduction: Metabolic bone diseases arise as a result of an imbalance in bone cell activities. Recent evidence suggests that environmental toxicants may be contributing factors altering these activities. One candidate molecule implicated in mediating the toxic effects of exogenous compounds is the aryl hydrocarbon receptor (AHR). Materials and Methods: Osteoblasts isolated from neonatal rat calvaria were analyzed for AHR expression by quantitative PCR, Western blot, and immunohistochemistry. In addition, AHR activation was evaluated by electromobility gel shift assay and fluorescence microscopy. Results: Our findings showed AHR expression in mature osteoblasts in vivo. The pattern of AHR expression peaks after alkaline phosphatase and before induction of osteocalcin. We first show that AHR functions as a transactivating receptor in osteoblasts, as evidenced by its ligand-dependent migration to the nucleus and its association with known dioxin response elements. AHR activation by 2,3,7,8-tetrachlorodibenzo -p -dioxin (TCDD) mediated the induction of cytochrome p450 1A1 and cycloxygenase-2 protein levels. This effect could be inhibited by the potent AHR antagonist, 3,4 methoxynitroflavone. Furthermore, lead treatment of osteoblasts upregulates the expression of AHR mRNA and protein levels, supporting a novel mechanism whereby lead in the skeleton may increase the sensitivity of bone cells to toxicant exposure. Conclusions: These data imply that the AHR mediates the effects of aromatic toxicants on bone and that AHR expression is regulated during osteoblast differentiation. [source]


    Time course characteristics of human herpesvirus 6 specific cellular immune response and natural killer cell activity in patients with exanthema subitum

    JOURNAL OF MEDICAL VIROLOGY, Issue 6 2006
    Takuji Kumagai
    Abstract The time-course of cell-mediated immunity in exanthema subitum is not well documented. The lymphoproliferative response to purified human herpesvirus 6 (HHV-6) antigen and to phytohemagglutinin was measured and natural killer (NK) cell activities determined in three consecutive specimens obtained biweekly from 18 young children and infants with exanthema subitum. Virus isolation and PCR detection of virus DNA and determination of neutralization antibody to HHV-6 and -7 were also carried out. The magnitude of the HHV-6 specific lymphoproliferative response varied; however, in most cases the time course kinetics revealed a low response in the acute phase with a subsequent gradual increase. In contrast, NK cell activities were high in the acute phase and declined gradually during convalescence. The lymphoproliferative response to phytohemagglutinin did not show a consistent trend in kinetics of time; however, dynamic changes in activity were observed in patients during the acute and convalescent periods. The results suggest that NK cells play a major role in resolving acute phase infection while specific lymphocyte activity develops later. The cause of the delayed development of HHV-6 specific lymphoproliferative response is unknown. The lymphoproliferative response to phytohemagglutinin ratios implied that HHV-6 infection has some impact on host T-cell immunity during the course of exanthema subitum. J. Med. Virol. 78:792,799, 2006. © 2006 Wiley-Liss, Inc. [source]


    Effect of naringin on bone cells

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 11 2006
    R.W.K. Wong
    Abstract Statin, a HMG-CoA reductase inhibitor, was shown to increase BMP-2 gene expression for bone formation, by blocking the mevalonate pathway in cholesterol production. We investigated the effect of naringin, a flavonoid available commonly in citrus fruits, which was also a HMG-CoA reductase inhibitor, in UMR 106 osteoblastic cell line in vitro. The control group consisted of cells cultured without any intervention for different time intervals (24 h, 48 h, and 72 h), whereas the experimental (naringin) group consisted of cells cultured with naringin of different concentrations (0.001 µmol/L, 0.01 µmol/L, and 0.1 µmol/L) for the same time intervals of the control. Colorimetric Tetrazolium (MTT) assay, total protein content assay, and alkaline phosphatase activity were used to measure the cellular activities. Results for the naringin group showed an increase in MTT assay compared with the control and the effect was dose dependent. At high concentration (0.1 µmol), the increases ranged from 60% to 80%. In the total protein content assay, naringin also showed an increase compared with control and the effect was also dose dependent. At high concentration (0.1 µmol), the increases ranged from 9% to 20%. In the alkaline phosphatase activity assay, naringin at high concentration (0.1 µmol) significantly increased the activity up to 20%. In conclusion, naringin significantly increased bone cell activities in vitro. This is the first study specifically attempted to investigate the effect of naringin on bone cell activities. Besides statin, this provided another example of mevalonate pathway blockage in the cholesterol production pathway by HMG-CoA reductase inhibition will increase the bone cell activities. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:2045,2050, 2006 [source]


    Multiple-Cell Spike Density and Neural Noise Level Analysis by Semimicroelectrode Recording for Identification of the Subthalamic Nucleus During Surgery for Parkinson's Disease

    NEUROMODULATION, Issue 1 2008
    Toshikazu Kano MD
    ABSTRACT Objective.,, For targeting the subthalamic nucleus (STN), we attempted to quantify the changes in multiple cell activities by computing the neural noise level and multiple-cell spike density (MSD). Methods.,, We analyzed the neural noise level and MSD by stepwise recording at every 0.25-mm increment during the final tracking in 90 sides of 45 patients with Parkinson's disease. The MSD was analyzed with cut-off levels ranging from 1.2- to 2.0-fold the neural noise level in the internal capsule or zona incerta in each trajectory. Results.,, The dorsal boundary of the STN was identified from an increase in the neural noise ratio in all sides. The ventral boundary was identifiable, however, from a decrease in the neural noise ratio in only 70 sides (78%). In contrast, both the dorsal and ventral boundaries were clearly identified from an increase and a decrease in the MSD, respectively, in all of the 90 sides. Conclusion.,, MSD analysis by semimicroelectrode recording represents a useful, practical, and apparently reliable means for identifying the boundaries of the STN. [source]


    The Development of the Metanephric Kidney in the Pig

    ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2005
    H. Bragulla
    Aims:, The metanephric kidneys of the pig are used as xenotransplants in human medicine. In order for transplants to fit within the host organisms, the subcapsular blastema and blood vessels are crucial for the development of new nephrons to sustain the organ functions. The aim of this study is to obtain data concerning the post-natal development of metanephric nephrons in the porcine kidney. Materials and Methods:, The metanephric kidneys of six porcine fetuses with a crown-rump length ranging from 40 mm to 220 mm of eight piglets aged between 6 to 10 weeks and of three adult pigs were studied. Eight lectins as well as anti-actin and anti-myosin antibodies were used for lectin- and immunohistochemistry to study the subcapsular metanephric blastema, to visualize the blood-urine barrier in the nephrons and collecting tubules, and to study the blood vessels in both the renal cortex and marrow. Results and Conclusions:, A subcapsular metanephric blastema was still present in the kidney of 10-week-old piglets. Dense condensation of mesenchymal cells surrounded the terminal branches of the collecting ducts and showed first signs of mesenchymal-epithelial transformation. Characteristic comma-shaped and s-shaped bodies were found in and underneath the subcapsular blastema. In the fibrous renal capsule of six-week-old piglets, a first faint binding reaction of anti-actin was visible and intensified in the fibrous renal capsule in ten-week-old piglets and in adult pigs. In addition, the smooth-muscle layers of the blood vessels were stained by the anti-actin and anti-myosin antibodies. The lectins showed various affinities to the endothelium of blood vessels and to the epithelial cells lining of the capsules of the metanephric renal corpuscles, the various parts of the renal tubules, as well as the collecting tubules and the renal pelvis. The affinity of the epithelial cells to a specific lectin varies in neighbouring cells, indicating different cell activities or cell cycles. [source]


    Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field

    BIOELECTROMAGNETICS, Issue 3 2006
    P. Merola
    Abstract The aim of this study was to examine whether a modulated radiofrequency of the type used in cellular phone communications at a specific absorption rate (SAR) higher than International Commission on Non-ionizing Radiation Protection (ICNIRP) reference level for occupational exposure, could elicit alterations on proliferation, differentiation, and apoptosis processes in a neuroblastoma cell line. The cell line was exposed for 24, 48, and 72 h to 900 MHz radiofrequency and proliferation and differentiation were tested by WST-I assay and by a molecular analysis of specific markers, two oncogenes and a cytoskeleton protein, in exponential growth phase and in synchronized cell cultures. Apoptosis was evaluated by caspase activation analysis and by molecular detection of Poly (ADP-ribose) polimerase (PARP) cleavage. Combined exposures to radiofrequency and to the differentiative agent retinoic acid or to the apoptotic inducer camptothecin were carried out to test possible interference between electromagnetic field and chemical agents. Overall our data suggest that 900 MHz radiofrequency exposure up to 72 h does not induce significant alterations in the three principal cell activities in a neuroblastoma cell line. Bioelectromagnetics 27:164,171, 2006. © 2006 Wiley-Liss, Inc. [source]


    Rational improvement of simvastatin synthase solubility in Escherichia coli leads to higher whole-cell biocatalytic activity

    BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
    Xinkai Xie
    Abstract Simvastatin is the active pharmaceutical ingredient of the blockbuster cholesterol lowering drug Zocor. We have previously developed an Escherichia coli based whole-cell biocatalytic platform towards the synthesis of simvastatin sodium salt (SS) starting from the precursor monacolin J sodium salt (MJSS). The centerpiece of the biocatalytic approach is the simvastatin synthase LovD, which is highly prone to misfolding and aggregation when overexpressed from E. coli. Increasing the solubility of LovD without decreasing its catalytic activity can therefore elevate the performance of the whole-cell biocatalyst. Using a combination of homology structural prediction and site-directed mutagenesis, we identified two cysteine residues in LovD that are responsible for nonspecific intermolecular crosslinking, which leads to oligomer formation and protein aggregation. Replacement of Cys40 and Cys60 with alanine residues resulted in marked gain in both protein solubility and whole-cell biocatalytic activities. Further mutagenesis experiments converting these two residues to small or polar natural amino acids showed that C40A and C60N are the most beneficial, affording 27% and 26% increase in whole cell activities, respectively. The double mutant C40A/C60N combines the individual improvements and displayed ,50% increase in protein solubility and whole-cell activity. Optimized fed-batch high-cell-density fermentation of the double mutant in an E. coli strain engineered for simvastatin production quantitatively (>99%) converted 45 mM MJSS to SS within 18 h, which represents a significant improvement over the performance of wild-type LovD under identical conditions. The high efficiency of the improved whole-cell platform renders the biocatalytic synthesis of SS an attractive substitute over the existing semisynthetic routes. Biotechnol. Bioeng. 2009;102: 20,28. © 2008 Wiley Periodicals, Inc. [source]


    Sphingosine kinase signalling in immune cells

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2005
    Tay Hwee Kee
    SUMMARY 1.,Sphingolipids are potent second messengers modulating biochemical intracellular events and acting as ligands to mediate extracellular systems. Sphingosine kinase (SPHK) is the enzyme that phosphorylates sphingosine into sphingosine-1-phosphate (S1P), a potent bioactive sphingolipid. 2.,The fact that SPHK is highly conserved from protozoa to mammals and is ubiquitous in living tissues reveals important roles of the SPHK pathway for the maintenance of health maintenance. This is also supported by comprehensive reviews on features of its main product, S1P, as having intracellular as well as extracellular roles, inducing a wide range of physiological responses from triggering Ca2+ release from internal stores to promoting growth and cell motility. 3.,Immune cell activities have been shown to be modulated by the dynamic balance between ceramide, sphingosine and S1P, conceptualized as a rheostat. Cell proliferation, differentiation, motility and survival have been attributed to the regulatory actions of S1P. The properties of SPHK activity in immune cells are linked to the functions of triggered growth and survival factors, phorbol esters, hormones, cytokines and chemokines, as well as antigen receptors, such as Fc,RI and Fc,RI. 4.,Mechanisms of the SPHK signalling pathway are explored as new targets for drug development to suppress inflammation and other pathological conditions. [source]


    Combined effect of IL-17 and blockade of nitric oxide biosynthesis on haematopoiesis in mice

    ACTA PHYSIOLOGICA, Issue 1 2010
    A. Krsti
    Abstract Aim:, The study was undertaken to extend our investigation concerning both the in vivo activity of interleukin (IL)-17 and the specific role of nitric oxide (NO) in IL-17-induced effects in the process of haematopoiesis. Methods:, CBA mice were simultaneously treated with IL-17 and/or nitric oxide synthase (NOS) inhibitor, l -NAME, for 5 days and changes within various haematopoietic cell lineages in bone marrow, spleen and peripheral blood were analysed. Results:, Findings showed that administration of both IL-17 and l -NAME stimulated increase in net haematopoiesis in normal mice. IL-17-enhanced myelopoiesis was characterized by stimulation of both femoral and splenic haematopoietic progenitor cells and morphologically recognizable granulocytes. Additionally, IL-17 induced alterations in the frequency of erythroid progenitor cells in both bone marrow and spleen, accompanied with their mobilization to the peripheral blood. As a consequence of these changes in the erythroid cell compartments, significant reticulocytosis was observed, which evidenced that in IL-17-treated mice effective erythropoiesis occurred. Exposure of mice to NOS inhibitor also increased the number of both granulocyte-macrophage and erythroid progenitors in bone marrow and spleens, and these alterations were followed by the mobilization of erythroid progenitors and elevated content of reticulocytes in peripheral blood. The specific role of NO in IL-17-induced haematopoiesis was demonstrated only in the IL-17-reducing effect on bone marrow late stage erythroid progenitors, CFU-E. Conclusion:, The results demonstrated the involvement of both IL-17 and NO in the regulation of haematopoietic cell activity in various haematopoietic compartments. They further suggest that IL-17 effects are differentially mediated depending on the haematopoietic microenvironments. [source]


    Clonal analysis of patterns of growth, stem cell activity, and cell movement during the development and maintenance of the murine corneal epithelium

    DEVELOPMENTAL DYNAMICS, Issue 4 2002
    J. Martin Collinson
    Abstract Patterns of growth and cell movement in the developing and adult corneal epithelium were investigated by analysing clonal patches of LacZ -expressing cells in chimeric and X-inactivation mosaic mice. It was found that cell proliferation throughout the basal corneal epithelium during embryogenesis and early postnatal life creates a disordered mosaic pattern of LacZ+ clones that contrasts with patterns of proliferation and striping produced during the later embryonic stages of retinal pigmented epithelium development. The early mosaic pattern in the corneal epithelium is replaced in the first 12 postnatal weeks by an ordered pattern of radial stripes or sectors that reflects migration without mixing of the progeny of clones of limbal stem cells. In contrast to previous assumptions, it was found that maturation of the activity of limbal stem cells and the pattern of migration of their progeny are delayed for several weeks postnatally. No evidence was found for immigration of the progeny of stem cells until the 5th postnatal week. There are approximately 100 clones of limbal stem cells initially, and clones are lost during postnatal life. Our studies provide a new assay for limbal and corneal defects in mutant mice. © 2002 Wiley-Liss, Inc. [source]


    Dopamine modulation of the In vivo acetylcholine response in the Drosophila mushroom body

    DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2009
    Vitold Tsydzik
    Abstract Olfactory sensory information in Drosophila is transmitted through antennal lobe projections to Mushroom Body neurons (Kenyon cells) by means of cholinergic synapses. Application of acetylcholine (ACh) and odors produce significant increases in intracellular calcium ([Ca2+]i) in these neurons. Behavioral studies show that Kenyon cell activity is modulated by dopaminergic inputs and this modulation is thought to be the basis for an olfactory conditioned response. However, quantitative assessment of the synaptic inputs to Kenyon cells is currently lacking. To assess neuronal activity under in vivo conditions, we have used the endogenously-expressed camgaroo reporter to measure [Ca2+]i in these neurons. We report here the dose-response relationship of Kenyon cells for ACh and dopamine (DA). Importantly, we also show that simultaneous application of ACh and DA results in a significant decrease in the response to ACh alone. In addition, we show inhibition of the ACh response by cyclic adenosine monophosphate. This is the first quantitative assessment of the effects of these two important transmitters in this system, and it provides an important basis for future analysis of the cellular mechanisms of this well established model for associative olfactory learning. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


    Statistical Analysis of Microarray Data

    ADDICTION BIOLOGY, Issue 1 2005
    Mark Reimers
    Microarrays promise dynamic snapshots of cell activity, but microarray results are unfortunately not straightforward to interpret. This article aims to distill the most useful practical results from the vast body of literature availalable on microarray data analysis. Topics covered include: experimental design issues, normalization, quality control, exploratory analysis, and tests for differential expression. Special attention is paid to the peculiarities of low-level analysis of Affymetrix chips, and the multiple testing problem in determining differential expression. The aim of this article is to provide useful answers to the most common practical issues in microarray data analysis. The main topics are pre-processing (normalization), and detecting differential expression. Subsidiary topics include experimental design, and exploratory analysis. Further discussion is found at the author's web page (http://discover.nci.nih.gov, Notes on Microarray Data Analysis). [source]


    High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
    Peter Somogyi
    Abstract The release of neurotransmitters is modulated by presynaptic metabotropic glutamate receptors (mGluRs), which show a highly selective expression and subcellular location in glutamatergic terminals in the hippocampus. Using immunocytochemistry, we investigated whether one of the receptors, mGluR7, whose level of expression is governed by the postsynaptic target, was present in GABAergic terminals and whether such terminals targeted particular cells. A total of 165 interneuron dendritic profiles receiving 466 synapses (82% mGluR7a-positive) were analysed. The presynaptic active zones of most GAD-(77%) or GABA-positive (94%) synaptic boutons on interneurons innervated by mGluR7a-enriched glutamatergic terminals (mGluR7a-decorated) were immunopositive for mGluR7a. GABAergic terminals on pyramidal cells and most other interneurons in str. oriens were mGluR7a-immunonegative. The mGluR7a-decorated cells were mostly somatostatin- and mGluR1,-immunopositive neurons in str. oriens and the alveus. Their GABAergic input mainly originated from VIP-positive terminals, 90% of which expressed high levels of mGluR7a in the presynaptic active zone. Parvalbumin-positive synaptic terminals were rare on mGluR7a-decorated cells, but on these neurons 73% of them were mGluR7a-immunopositive. Some type II synapses innervating interneurons were immunopositive for mGluR7b, as were some type I synapses. Because not all target cells of VIP-positive neurons are known it has not been possible to determine whether mGluR7 is expressed in a target-cell-specific manner in the terminals of single GABAergic cells. The activation of mGluR7 may decrease GABA release to mGluR7-decorated cells at times of high pyramidal cell activity, which elevates extracellular glutamate levels. Alternatively, the presynaptic receptor may be activated by as yet unidentified endogenous ligands released by the GABAergic terminals or the postsynaptic dendrites. [source]


    Postnatal maturation of GABAA and GABAC receptor function in the mammalian superior colliculus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001
    Mathias Boller
    Abstract In the stratum griseum superficiale (SGS) of the mammalian superior colliculus, GABAC receptors seem to control the excitability of projection neurons by selective inactivation of local GABAergic interneurons. As the onset of visual responses to SC begins well after birth in the rat, it is possible to study developmental changes in GABAergic mechanisms that are linked to the onset of visual information processing. In order to analyse postnatal changes in inhibitory mechanisms that involve GABA receptor function, we used extracellular field potential (FP) recordings and single cell patch-clamp techniques in slices from postnatal day 4 (P4) to P32 and examined the effects of GABA and muscimol on electrically evoked SGS cell activity. While GABAA receptor activation affected FP amplitudes throughout postnatal development, GABAC receptor activation did not significantly change FP amplitudes until the third postnatal week. Results from patch-clamping single cells, however, clearly demonstrate that GABAC receptors are already functional at P4 , similar to GABAA receptors. Throughout postnatal development, activation of GABAC receptors leads to a strong inhibition of inhibitory postsynaptic activity, indicating that GABAC receptors are expressed by inhibitory interneurons. Furthermore, the proportion of neurons that show decreased excitatory postsynaptic activity during GABAC receptor activation correlates with the proportion of GABAergic interneurons in SGS. Our patch-clamp results indicate that the functional expression of GABAC receptors by GABAergic interneurons does not change significantly during postnatal development. However, our measurements of FP amplitudes indicate that the maturation of the efferent connections of these GABAergic neurons within SGS during the third postnatal week strongly changes GABAC receptor function. [source]


    Bilaterally synchronous complex spike Purkinje cell activity in the mammalian cerebellum

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001
    Tomoya Yamamoto
    Abstract Complex spike activity was simultaneously recorded from 96 Purkinje cells in the rat cerebellar cortex. Rostrocaudal complex spike synchronicity bands were studied in crus I, IIa and IIb and in vermal lobule 6c. Detailed analysis in crus IIa revealed that complex spike activity was staggered sequentially with a 20,50 cm/sec ,propagation velocity' in the mediolateral direction, and that such activity was bilaterally synchronous. The ,propagation' of complex spike activity was symmetrical between right and left crus IIa. Temporally, the neurons that aligned in the rostrocaudal direction typically generated complex spikes close to simultaneously. The correlation of complex spike firing was high between crus IIa and crus IIb, moderate between crus IIa and vermis 6c, and relatively low between Purkinje cells in crus I and crus IIa. These results indicate that, whilst discrete boarders exist between different isochronicity bands, these bands do communicate with each other in the mediolateral direction via slow ,propagation waves' that loosely bind their activity. The results indicate that the olivocerebellar system is organized, bilaterally, to take advantage of the timing signals generated at the inferior olive nucleus. [source]


    Lipopolysaccharide alters decorin and biglycan synthesis in rat alveolar bone osteoblasts: consequences for bone repair during periodontal disease

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2008
    Helen C. Roberts
    A prime pathogenic agent associated with periodontitis is lipopolysaccharide (LPS) derived from Porphyromonas gingivalis. This study investigated the effects of P. gingivalis LPS on osteoblasts, which are responsible for alveolar bone repair. Bone cells were obtained from explants of rat alveolar bone chips and cultured with 0,200 ng ml,1 of P. gingivalis LPS. Porphyromonas gingivalis LPS significantly increased cell proliferation and inhibited osteoblast differentiation, as judged by reduced alkaline phosphatase activity. Analysis of biglycan mRNA and protein levels indicated that P. gingivalis LPS significantly delayed the normally high expression of biglycan during the early stages of culture, which are associated with cell proliferation and early differentiation of progenitor cells. In the presence of P. gingivalis LPS, decorin expression by the alveolar bone cells was reduced during periods of culture relating to collagen fibrillogenesis and mineral deposition. Analysis of glycosaminoglycan chains conjugated to these proteoglycans suggested that in the presence of P. gingivalis LPS, dermatan sulfate persisted within the matrix. This study suggests that P. gingivalis LPS influences the expression and processing of decorin and biglycan in the matrix, altering alveolar bone cell activity and osteoblast phenotype development. The consequences of this altered expression in relation to hindering bone repair as part of the cycle of events during periodontal disease are discussed. [source]


    Restoration of innate host defense responses by oral supplementation of branched-chain amino acids in decompensated cirrhotic patients

    HEPATOLOGY RESEARCH, Issue 12 2007
    Ikuo Nakamura
    Aim:, It has been reported that host defense responses, such as phagocytic function of neutrophils and natural killer (NK) cell activity of lymphocytes, are impaired in cirrhotic patients. The aim of the present study was to examine the effects of oral supplementation of branched-chain amino acids (BCAA) on host defense mechanisms in peripheral blood of patients with decompensated cirrhosis. Methods:, Ten patients with decompensated cirrhosis received 12 g BCAA daily for 3 months. Phagocytic function of neutrophils and NK activity of lymphocytes as well as serum albumin levels and Fisher's ratios were determined before and at 1 and 3 months of BCAA supplementation. For quantification of phagocytic function, fluorescent intensities of cells in the neutrophil region in the cytogram were determined by flow cytometry after incubation of whole blood with fluorescent microspheres. NK activity was estimated by 51Cr release assay using K-562 cell line as target cells. Results:, Phagocytic function of neutrophils was significantly improved by 3-month BCAA supplementation (P < 0.01). Thechanges of NK activity were also significant at 3 months of supplementation compared with before supplementation (P < 0.01). Fisher's ratios were significantly increased at 3 months of BCAA supplementation compared with those before oral supplementation (P < 0.05), although the changes of serum albumin level were not statistically significant. Conclusions:, BCAA oral supplementation improved phagocytic function of neutrophils and NK activity of lymphocytes in cirrhotic patients. BCAA supplementation may reduce the risk of bacterial and viral infection in patients with decompensated cirrhosis. [source]


    Naturalistic stimulus trains evoke reproducible subicular responses both within and between animals in vivo

    HIPPOCAMPUS, Issue 2 2010
    Beth Tunstall
    Abstract Previous investigation of CA1-evoked subicular responses has used either single low-frequency pulses (LF), paired-pulses (PP), or high-frequency bursts. Here we test for the first time how subiculum responds to naturalistic stimulation trains (NSTs). We recorded CA1-evoked field potentials from dorsal rat subiculum in response to LF, PP, and two NST patterns. The latter were derived from CA1 place cell activity; NST1 contained bursts of stimuli presented in two main episodes, while the burst-patterned stimuli in NST2 were spaced more evenly. NSTs generated significantly greater field responses compared with LF or PP patterns. Response patterns to either NST were significantly correlated across trial repeats in 9 out of 10 rats, supporting a robust postsynaptic encoding of CA1 input by subiculum. Correlations between NST responses were also observed across experiments; however, these were more variable than those within experiments. The relationship between response magnitude and activation history revealed a strong correlation between magnitude and NST instantaneous frequency for NST1 but was weaker for NST2. In addition, the number of stimuli within a prior 500 ms window was a determining factor for response magnitude for both NSTs. Overall, the robust reproducibility in subicular responses within rats suggests that information within NSTs is faithfully transmitted through the CA1-subiculum axis. However, variation in response sequences across rats suggests that encoding patterns to the same input differ across the subiculum. Changes in the ratio of target bursting and regularly spiking neurons along the subicular proximodistal axis may account for this variation. The activation history of this connection also appears to be a strong determining factor for response magnitude. © 2009 Wiley-Liss, Inc. [source]


    Stability of hippocampal place cell activity across the rat estrous cycle,

    HIPPOCAMPUS, Issue 2 2005
    Jennifer Tropp
    Abstract Findings from both in vitro and in vivo studies have shown that estrogen exerts pronounced effects on hippocampal morphology and physiology. The degree to which these molecular findings influence hippocampal processing in freely behaving animals is unclear. The present study assessed the effect of the estrous cycle on hippocampal place cells in naturally cycling rats during two behavioral states. Female Sprague-Dawley rats were trained to alternate on a U-shaped runway for food reinforcement. Single-unit recordings of hippocampal CA1 cells were conducted under two conditions: (1) at rest on a holder, and (2) running on the maze. Spatial firing characteristics of the cells were examined at different stages of the estrous cycle (i.e., diestrus, proestrus, and estrus). Specifically, information was collected on (1) mean firing rates; (2) basic place field parameters; and (3) changes in the firing dynamics of these cells (e.g., burst properties). The findings showed a decrease in mean firing rate on the maze during proestrus. However, other basic measures of spatial tuning and burst properties were unchanged. The current study suggests that there is relative stability of hippocampal place cells across the estrous cycle during a well-trained task. © 2004 Wiley-Liss, Inc. [source]


    Hierarchical model of the population dynamics of hippocampal dentate granule cells

    HIPPOCAMPUS, Issue 5 2002
    G.A. Chauvet
    Abstract A hierarchical modeling approach is used as the basis for a mathematical representation of the population activity of hippocampal dentate granule cells. Using neural field equations, the variation in time and space of dentate granule cell activity is derived from the summed synaptic potential and summed action potential responses of a population of granule cells evoked by monosynaptic excitatory input from entorhinal cortical afferents. In this formulation of the problem, we have considered a two-level hierarchy: the synapses of entorhinal cortical axons define the first level of organization, and dentate granule cells, which include these synapses, define the second, higher level of organization. The model is specified by two state field variables, for membrane potential and for synaptic efficacy, respectively, with both evolving according to different time scales. The two state field variables introduce new parameters, physiological and anatomical, which characterize the dentate from the point of view of neuronal and synaptic populations: (1) a set of geometrical constraints corresponding to the morphological properties of granule cells and anatomical characteristics of entorhinal-dentate connections; and (2) a set of neuronal parameters corresponding to physiological mechanisms. Assuming no interaction between granule cells, i.e., neither ephaptic nor synaptic coupling, the model is shown to be mathematically tractable and allows solution of the field equations leading to the determination of activity. This treatment leads to the definition of two state variables, volume of stimulated synapses and firing time, which describe observed activity. Numerical simulations are used to investigate the populational characterization of the dentate by individual parameters: (1) the relationship between the conditions of stimulation of active perforant path fibers, e.g., stimulating intensity, and activity in the granule cell layer; and (2) the influence of geometry on the generation of activity, i.e., the influence of neuron density and synaptic density-connectivity. As an example application of the model, the granule cell population spike is reconstructed and compared with experimental data. Hippocampus 2002;12:698,712. © 2002 Wiley-Liss, Inc. [source]


    Competitive Hebbian learning and the hippocampal place cell system: Modeling the interaction of visual and path integration cues

    HIPPOCAMPUS, Issue 3 2001
    Alex Guazzelli
    Abstract The hippocampus has long been thought essential for implementing a cognitive map of the environment. However, almost 30 years since place cells were found in rodent hippocampal field CA1, it is still unclear how such an allocentric representation arises from an egocentrically perceived world. By means of a competitive Hebbian learning rule responsible for coding visual and path integration cues, our model is able to explain the diversity of place cell responses observed in a large set of electrophysiological experiments with a single fixed set of parameters. Experiments included changes observed in place fields due to exploration of a new environment, darkness, retrosplenial cortex inactivation, and removal, rotation, and permutation of landmarks. To code for visual cues for each landmark, we defined two perceptual schemas representing landmark bearing and distance information over a linear array of cells. The information conveyed by the perceptual schemas is further processed through a network of adaptive layers which ultimately modulate the resulting activity of our simulated place cells. In path integration terms, our system is able to dynamically remap a bump of activity coding for the displacement of the animal in relation to an environmental anchor. We hypothesize that path integration information is computed in the rodent posterior parietal cortex and conveyed to the hippocampus where, together with visual information, it modulates place cell activity. The resulting network yields a more direct treatment of partial remapping of place fields than other models. In so doing, it makes new predictions regarding the nature of the interaction between visual and path integration cues during new learning and when the system is challenged with environmental changes. Hippocampus 2001;11:216,239. © 2001 Wiley-Liss, Inc. [source]


    Interleukin-15 is not required for the induction or maintenance of orally induced peripheral tolerance

    IMMUNOLOGY, Issue 3 2004
    Owain R. Millington
    Summary Orally induced tolerance is a physiologically relevant form of peripheral tolerance, which is believed to be important for the prevention of pathological immune responses in the gut. Of several mechanisms proposed to mediate oral tolerance, one that has received much attention recently is the concept of regulatory CD4+ T cells. As recent studies have suggested that interleukin (IL)-15 may be important for the differentiation and maintenance of regulatory CD4+ T cells, we have examined the role of IL-15 in oral tolerance, using a soluble form of the IL-15 receptor (sIL-15R) which blocks the biological effects of IL-15 in vivo. Oral tolerance induced by feeding mice ovalbumin (OVA) in a low-dose regimen believed to induce regulatory T cell activity was not affected by the administration of sIL-15R during either the induction or maintenance phase of tolerance. Thus, oral tolerance does not involve an IL-15-dependent mechanism. [source]


    Host's innate immune response to fungal and bacterial agents in vitro: up-regulation of interleukin-15 gene expression resulting in enhanced natural killer cell activity

    IMMUNOLOGY, Issue 2 2003
    Phay Tran
    Summary Natural killer (NK) cells play an important role in the first line of defence against viral infections. We have shown earlier that exposure of human peripheral blood mononuclear cells (PBMC) to viruses results in rapid up-regulation of NK cell activity via interleukin-15 (IL-15) induction, and that this mechanism curtails viral infection in vitro. By using Candida albicans, Escherichia coli and Staphylococcus aureus, we now show here that exposure of PBMC to fungi and bacteria also results in an immediate increase of NK cytotoxicity. Reverse transcriptase,polymerase chain reaction and Western blot analyses as well as the use of antibodies against different cytokines revealed that IL-15 induction played a predominant role in this NK activation. These results indicate that IL-15 is also involved in the innate immune response against fungal and bacterial agents. [source]


    The biocompatibility of modified experimental Portland cements with potential for use in dentistry

    INTERNATIONAL ENDODONTIC JOURNAL, Issue 12 2008
    J. Camilleri
    Abstract Aim, To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Methodology, Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass,ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBlueÔ dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Results, Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass,ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Conclusions, Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely. [source]


    Coating of Human Mesenchymal Cells in 3D Culture with Bioinorganic Nanoparticles Promotes Osteoblastic Differentiation and Gene Transfection,

    ADVANCED MATERIALS, Issue 17 2007
    R. Gonzalez-McQuire
    Mesenchymal cells are modified in suspension with bio-functionalized calcium phosphate nanoparticles using a scaffold-free cell decoration method. Coated cells remain viable and retain functionality, with cell activity stimulated by the structure and composition of the coating. [source]


    Tumour immunology, vaccination and escape strategies

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 3 2003
    A. García-Lora
    Summary Our increasing knowledge of the mechanisms by which tumour cells escape immune effector cells is helping to establish new approaches to therapeutic vaccination against tumour development. One of the escape mechanisms used by tumour cells is the generation of multiple variants with different HLA phenotypes. These MHC class I phenotypic alterations play a key role in the tumour,host scenario, as they are crucial molecules for antigen presentation to T cells and modulation of natural killer (NK) cell activity. This review presents evidence indicating that tumours develop sophisticated MHC phenotypes that allow them to escape immune surveillance. We evaluate the importance of these alterations in terms of the potential development of therapeutic approaches to immune vaccination. [source]