| |||
Causes Apoptosis (cause + apoptosi)
Selected AbstractsCover Picture , Mol.MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 5 2008Nutr. Cancer chemoprevention and hemotherapy: dietary polyphenols and signalling pathways Inhibitory effects of trans-resveratrol analogues on human colon tumoral cells Potential of sphingomyelin as a chemopreventive gent in colon cancer Unsaturated fatty acids liberated from VLDL cause apoptosis in endothelial cells [source] Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafishDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2007Sean C. Kassen Abstract Constant intense light causes apoptosis of rod and cone photoreceptors in adult albino zebrafish. The photoreceptors subsequently regenerate from proliferating inner nuclear layer (INL) progenitor cells that migrate to the outer nuclear layer (ONL) and differentiate into rods and cones. To identify gene expression changes during this photoreceptor regeneration response, a microarray analysis was performed at five time points during the light treatment. The time course included an early time point during photoreceptor death (16 h), later time points during progenitor cell proliferation and migration (31, 51, and 68 h) and a 96 h time point, which likely corresponds to the initial photoreceptor differentiation. Mean expression values for each gene were calculated at each time point relative to the control (0 h light exposure) and statistical analysis by one-way ANOVA identified 4567 genes exhibiting significant changes in gene expression along the time course. The genes within this data set were clustered based on their temporal expression patterns and proposed functions. Quantitative real-time PCR validated the microarray expression profiles for selected genes, including stat3 whose expression increased markedly during the light exposure. Based on immunoblots, both total and activated Stat3 protein expression also increased during the light treatment. Immunolocalization of Stat3 on retinal tissue sections demonstrated increased expression in photoreceptors and Müller glia by 16 h of light exposure. Some of the Stat3-positive Müller cells expressed PCNA at 31 h, suggesting that Stat3 may play a role in signaling a subset of Müller cells to proliferate during the regeneration response. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] Mutant protein kinase C gamma that causes spinocerebellar ataxia type 14 (SCA14) is selectively degraded by autophagyGENES TO CELLS, Issue 5 2010Kazuhiro Yamamoto Several causal missense mutations in the protein kinase C, (,PKC) gene have been found in spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously showed that mutant ,PKC found in SCA14 is susceptible to aggregation and causes apoptosis. Aggregation of misfolded proteins is generally involved in the pathogenesis of many neurodegenerative diseases. Growing evidence indicates that macroautophagy (autophagy) is important for the degradation of misfolded proteins and the prevention of neurodegenerative diseases. In the present study, we examined whether autophagy is involved in the degradation of the mutant ,PKC that causes SCA14. Mutant ,PKC-GFP was transiently expressed in SH-SY5Y cells by using an adenoviral tetracycline-regulated system. Subsequently, temporal changes in clearance of aggregates and degradation of ,PKC-GFP were evaluated. Rapamycin, an autophagic inducer, accelerated clearance of aggregates and promoted degradation of mutant ,PKC-GFP, but it did not affect degradation of wild-type ,PKC-GFP. These effects of rapamycin were not observed in embryonic fibroblast cells from Atg5-deficient mice, which are not able to perform autophagy. Furthermore, lithium, another type of autophagic inducer, also promoted the clearance of mutant ,PKC aggregates. These results indicate that autophagy contributes to the degradation of mutant ,PKC, suggesting that autophagic inducers could provide therapeutic potential for SCA14. [source] Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblastsJOURNAL OF PERIODONTAL RESEARCH, Issue 4 2008K. Yaegaki Background and Objective:, Volatile sulfur compounds are the main cause of halitosis. Hydrogen sulfide is one of these volatile sulfur compounds and the principal malodorous compound in physiological halitosis. Periodontally pathogenic activities of hydrogen sulfide have been previously reported. Hydrogen sulfide induces apoptotic cell death in aorta smooth muscle cells and in other tissues. Apoptosis plays an important role in the onset and progress of periodontitis. The objective of this study was to determine whether hydrogen sulfide causes apoptosis in human gingival fibroblasts. Material and methods:, Necrotic cells were detected using a lactate dehydrogenase assay. Apoptosis was ascertained using a histone-complexed DNA fragment assay and flow cytometry. The level of caspase 3, a key enzyme in apoptotic signaling, was also measured, and the effects of hydrogen sulfide on reactive oxygen species and superoxide dismutase were assessed. DNA damage caused by hydrogen sulfide was examined by means of single-cell gel electrophoresis. Results:, After 72 h of incubation with 100 ng/mL of hydrogen sulfide, necrosis was found in less than 10% of human gingival fibroblasts, whereas apoptosis was significantly increased (p < 0.05). Superoxide dismutase activity was strongly inhibited, and reactive oxygen species production was enhanced, after 48 and 72 h of incubation. Caspase 3 activity was also increased after 72 h of incubation (p < 0.01). Tail length, percentage of DNA in tail, and tail moment, measured by single-cell gel electrophoresis, were also intensified after 72 h of incubation (p < 0.001). Conclusion:, Hydrogen sulfide caused apoptosis and DNA damage in human gingival fibroblasts. An increased level of reactive oxygen species stimulated by hydrogen sulfide may induce apoptosis and DNA strand breaks. [source] Immunohistochemical expression of CD95 (Fas), c-myc and epidermal growth factor receptor in hepatitis C virus infection, cirrhotic liver disease and hepatocellular carcinoma,APMIS, Issue 6 2006A. EL-BASSIOUNI Gene product expression in normal and chronic hepatitis C virus infection was determined in an attempt to improve our understanding of the molecular events leading to the development of cirrhosis and liver carcinoma. Activation of CD95 (Fas) causes apoptosis of cells and liver failure in mice and has been associated with human liver disorders. c-myc is involved in cell proliferation and EGFR in regeneration of cells. The material of the current study included 50 cases of chronic hepatitis C (CHC) (and negative hepatitis B virus infection), 29 cases of liver cirrhosis and HCV (LC), and 19 cases of hepatocellular carcinoma and HCV (HCC) admitted to the Theodor Bilharz Research Institute (TBRI) during the years 2003,2004. Ten wedge liver biopsies , taken during laparoscopic cholecystectomy , were included in the study as normal controls. Laboratory investigations, including liver function tests, serological markers for viral hepatitis and serum alpha fetoprotein level (,-FP), were determined for all cases. Histopathological study and immunohistochemistry using monoclonal antibodies for CD95, c-myc and EGFR were also done. In CHC cases, the histological activity index (HAI) revealed more expression of Fas antigen in liver tissues with active inflammation than in those without active inflammation (p<0.01). EGFR and c-myc act synergistically in liver tumorigenesis. Upregulation of Fas in chronic hepatitis C infection and of c-myc & EGFR in malignant transformation was concluded from this study. c-myc expression may obstruct the induction of apoptosis of HCC cells and lead to uncontrolled cell growth. [source] |