| |||
Causal Genes (causal + gene)
Selected AbstractsConfirmation and refinement of a QTL on BTA5 affecting milk production traits in the Fleckvieh dual purpose cattle breedANIMAL GENETICS, Issue 1 2010A. Awad Summary We analysed a QTL affecting milk yield (MY), milk protein yield (PY) and milk fat yield (FY) in the dual purpose cattle breed Fleckvieh on BTA5. Twenty-six microsatellite markers covering 135 cM were selected to analyse nine half-sib families containing 605 sons in a granddaughter design. We thereby assigned two new markers to the public linkage map using the CRI-MAP program. Phenotypic records were daughter yield deviations (DYD) originating from the routinely performed genetic evaluations of breeding animals. To determine the position of the QTL, three different approaches were applied: interval mapping (IM), linkage analysis by variance component analysis (LAVC), and combined linkage disequilibrium (LD) and linkage (LDL) analysis. All three methods mapped the QTL in the same marker interval (BM2830-ETH152) with the greatest test-statistic value at 118, 119.33 and 119.33 cM respectively. The positive QTL allele simultaneously increases DYD in the first lactation by 272 kg milk, 7.1 kg milk protein and 7.0 kg milk fat. Although the mapping accuracy and the significance of a QTL effect increased from IM over LAVC to LDL, the confidence interval was large (13, 20 and 24 cM for FY, MY and PY respectively) for the positional cloning of the causal gene. The estimated averages of pair wise marker LD with a distance <5 cM were low (0.107) and reflect the large effective population size of the Fleckvieh subpopulation analysed. This low level of LD suggests a need for increase in marker density in following fine mapping steps. [source] Exclusion of a T>C sequence variant in exon 7 of the canine G,s gene (GNAS1) as a causal gene for liver cancerANIMAL GENETICS, Issue 5 2009K. J. Dudenbostel No abstract is available for this article. [source] Incidental neurodevelopmental episodes in the etiology of schizophrenia: An expanded model involving epigenetics and developmentCLINICAL GENETICS, Issue 6 2004SM Singh Epidemiological data favors genetic predisposition for schizophrenia, a common and complex mental disorder in most populations. Search for the genes involved using candidate genes, positional cloning, and chromosomal aberrations including triplet repeat expansions have established a number of susceptibility loci and genomic sites but no causal gene(s) with a proven mechanism of action. Recent genome-wide gene expression studies on brains from schizophrenia patients and their matched controls have identified a number of genes that show an alteration in expression in the diseased brains. Although it is not possible to offer a cause and effect association between altered gene expression and disease, such observations support a neurodevelopmental model in schizophrenia. Here, we offer a mechanism of this disease, which takes into account the role of developmental noise and diversions of the neural system. It suggests that the final outcome of a neural developmental process is not fixed and exact. Rather it develops with a variation around the mean. More important, the phenotypic consequence may cross the norm as a result of fortuitous and/or epigenetic events. As a result, a normal genotype may develop as abnormal with a disease phenotype. More important, susceptible genotypes may have reduced penetrance and develop as a normal phenocopy. The incidental episodes in neurodevelopment will explain the frequency of schizophrenia in most populations and high discordance of monozygotic twins. [source] Hypertrophic cardiomyopathy: from genetics to treatmentEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2010Ali J. Marian Eur J Clin Invest 2010; 40 (4): 360,369 Abstract Background, Hypertrophic cardiomyopathy (HCM) is the prototypic form of pathological cardiac hypertrophy. HCM is an important cause of sudden cardiac death in the young and a major cause of morbidity in the elderly. Design, We discuss the clinical implications of recent advances in the molecular genetics of HCM. Results, The current diagnosis of HCM is neither adequately sensitive nor specific. Partial elucidation of the molecular genetic basis of HCM has raised interest in genetic-based diagnosis and management. Over a dozen causal genes have been identified. MYH7 and MYBPC3 mutations account for about 50% of cases. The remaining known causal genes are uncommon and some are rare. Advances in DNA sequencing techniques have made genetic screening practical. The difficulty, particularly in the sporadic cases and in small families, is to discern the causal from the non-causal variants. Overall, the causal mutations alone have limited implications in risk stratification and prognostication, as the clinical phenotype arises from complex and often non-linear interactions between various determinants. Conclusions, The clinical phenotype of ,HCM' results from mutations in sarcomeric proteins and subsequent activation of multiple cellular constituents including signal transducers. We advocate that HCM, despite its current recognition and management as a single disease entity, involves multiple partially independent mechanisms, despite similarity in the ensuing phenotype. To treat HCM effectively, it is necessary to delineate the underlying fundamental mechanisms that govern the pathogenesis of the phenotype and apply these principles to the treatment of each subset of clinically recognized HCM. [source] The role of tau (MAPT) in frontotemporal dementia and related tauopathies,HUMAN MUTATION, Issue 4 2004R. Rademakers Abstract Tau is a multifunctional protein that was originally identified as a microtubule-associated protein. In patients diagnosed with frontotemporal dementia and parkinsonism linked to chromosome 17, mutations in the gene encoding tau (MAPT) have been identified that disrupt the normal binding of tau to tubulin resulting in pathological deposits of hyperphosphorylated tau. Abnormal filamentous tau deposits have been reported as a pathological characteristic in several other neurodegenerative diseases, including frontotemporal dementia, Pick Disease, Alzheimer disease, argyrophilic grain disease, progressive supranuclear palsy, and corticobasal degeneration. In the last five years, extensive research has identified 34 different pathogenic MAPT mutations in 101 families worldwide. In vitro, cell-free and transfected cell studies have provided valuable information on tau dysfunction and transgenic mice carrying human MAPT mutations are being generated to study the influence of MAPT mutations in vivo. This mutation update describes the considerable differences in clinical and pathological presentation of patients with MAPT mutations and summarizes the effect of the different mutations on tau functioning. In addition, the role of tau as a genetic susceptibility factor is discussed, together with the genetic evidence for additional causal genes for tau-positive as well as tau-negative dementia. Hum Mutat 24:277,295, 2004. © 2004 Wiley-Liss, Inc. [source] 2163: Identification of novel disease gene for primary congenital glaucoma (PCG) through homozygosity mapping and next-generation sequencing strategies in a large consanguineous pedigreeACTA OPHTHALMOLOGICA, Issue 2010H VERDIN Purpose Primary congenital glaucoma (PCG) is caused by developmental anomalies of the trabecular meshwork and the anterior chamber angle resulting in an increased ocular pressure (IOP) and optic nerve damage. In general PCG displays an autosomal recessive inheritance pattern and is genetically heterogeneous. To date, three PCG loci are known, namely GLC3A, GLC3B and GLC3C, and two causal genes have been identified, CYP1B1 located in the GLC3A locus and LTPB2 located at 1.3 MB proximal to the GLC3C locus. The purpose of the current study is to identify the causal disease gene in a large consanguineous family with PCG, originating from Jordany. CYP1B1 mutations and linkage to the LTBP2, GLCB3 and GLCC3 locus were previously excluded. Methods In a first step, DNA from members from the consanguineous family will be genotyped by 250K GeneChip Mapping Affymetrix arrays. Homozygosity mapping will be applied to identify potential disease loci, using a homemade Perl script. Next, microsatellite analysis will be performed in order to confirm findings and to narrow down candidate regions. Subsequently, candidate regions of interest will be captured (Agilent) and sequenced on the Illumina Genome Analyser IIx (GAIIx). Gene and variant prioritization will be done using in-house developed software, followed by segregation analysis and screening in control individuals. At last, a cohort of 30 molecularly unsolved PCG patients will be screened for mutations in the newly identified disease. Conclusion The identification of a new disease gene for PCG may lead to better insights into the molecular pathogenesis of glaucoma, and might uncover novel therapeutic strategies. [source] |