Cathepsin Activity (cathepsin + activity)

Distribution by Scientific Domains


Selected Abstracts


Biochemical Properties and Consumer Acceptance of Pacific Whiting Fish Sauce

JOURNAL OF FOOD SCIENCE, Issue 3 2003
S. Tungkawachara
ABSTRACT Biochemical characteristics of fish sauce made from Pacific whiting whole fish and a mixture (1:1) of its byproducts were investigated at 0, 1, 3, and 9 mo. As fermentation time extended, the degree of hydrolysis, total nitrogen content, amino nitrogen content, and hypoxanthine content increased, while inosine content, moisture content, and pH decreased. Degree of hydrolysis was significantly different at 9 mo of fermentation. All cathepsin activities were negligible after 3 mo. Consumer tests showed a nonsignificant difference in overall acceptance between our samples and commercial anchovy fish sauce (P > 0.05). This study demonstrated that surimi byproducts can be utilized as raw material for fish sauce. [source]


Diverse regulatory roles for lysosomal proteases in the immune response

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2009
Jeff D. Colbert
Abstract The innate and adaptive immune system utilise endocytic protease activity to promote functional immune responses. Cysteine and aspartic proteases (cathepsins) constitute a subset of endocytic proteases, the immune function of which has been described extensively. Although historically these studies have focused on their role in processes such as antigen presentation and zymogen processing within the endocytic compartment, recent discoveries have demonstrated a critical role for these proteases in other intracellular compartments, and within the extracellular milieu. It has also become clear that their pattern of expression and substrate specificities are more diverse than was first envisaged. Here, we discuss recent advances addressing the role of lysosomal proteases in various aspects of the immune response. We pay attention to reports demonstrating cathepsin activity outside of its canonical endosome/lysosome microenvironment. [source]


Potent and Selective Inhibition of Human Cathepsin K Leads to Inhibition of Bone Resorption In Vivo in a Nonhuman Primate

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2001
George B. Stroup
Abstract Cathepsin K is a cysteine protease that plays an essential role in osteoclast-mediated degradation of the organic matrix of bone. Knockout of the enzyme in mice, as well as lack of functional enzyme in the human condition pycnodysostosis, results in osteopetrosis. These results suggests that inhibition of the human enzyme may provide protection from bone loss in states of elevated bone turnover, such as postmenopausal osteoporosis. To test this theory, we have produced a small molecule inhibitor of human cathepsin K, SB-357114, that potently and selectively inhibits this enzyme (Ki = 0.16 nM). This compound potently inhibited cathepsin activity in situ, in human osteoclasts (inhibitor concentration [IC]50 = 70 nM) as well as bone resorption mediated by human osteoclasts in vitro (IC50 = 29 nM). Using SB-357114, we evaluated the effect of inhibition of cathepsin K on bone resorption in vivo using a nonhuman primate model of postmenopausal bone loss in which the active form of cathepsin K is identical to the human orthologue. A gonadotropin-releasing hormone agonist (GnRHa) was used to render cynomolgus monkeys estrogen deficient, which led to an increase in bone turnover. Treatment with SB-357114 (12 mg/kg subcutaneously) resulted in a significant reduction in serum markers of bone resorption relative to untreated controls. The effect was observed 1.5 h after the first dose and was maintained for 24 h. After 5 days of dosing, the reductions in N-terminal telopeptides (NTx) and C-terminal telopeptides (CTx) of type I collagen were 61% and 67%, respectively. A decrease in serum osteocalcin of 22% was also observed. These data show that inhibition of cathepsin K results in a significant reduction of bone resorption in vivo and provide further evidence that this may be a viable approach to the treatment of postmenopausal osteoporosis. [source]


Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorption

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2003
Takahisa Sasaki
Abstract The differentiation and functions of osteoclasts (OC) are regulated by osteoblast-derived factors such as receptor activator of NFKB ligand (RANKL) that stimulates OC formation, and a novel secreted member of the TNF receptor superfamily, osteoprotegerin (OPG), that negatively regulates osteoclastogenesis. In examination of the preosteoclast (pOC) culture, pOCs formed without any additives expressed tartrate-resistant acid phosphatase (TRAP), but showed little resorptive activity. pOC treated with RANKL became TRAP-positive OC, which expressed intense vacuolar-type H+ -ATPase and exhibited prominent resorptive activity. Such effects of RANKL on pOC were completely inhibited by addition of OPG. OPG inhibited ruffled border formation in mature OC and reduced their resorptive activity, and also induced apoptosis of some OC. Although OPG administration significantly reduced trabecular bone loss in the femurs of ovariectomized (OVX) mice, the number of TRAP-positive OC in OPG-administered OVX mice was not significantly decreased. Rather, OPG administration caused the disappearance of ruffled borders and decreased H+ -ATPase expression in most OC. OPG deficiency causes severe osteoporosis. We also examined RANKL localization and OC induction in periodontal ligament (PDL) during experimental movement of incisors in OPG-deficient mice. Compared to wild-type OPG (+/+) littermates, after force application, TRAP-positive OC were markedly increased in the PDL and alveolar bone was severely destroyed in OPG-deficient mice. In both wild-type and OPG-deficient mice, RANKL expression in osteoblasts and fibroblasts became stronger by force application. These in vitro and in vivo studies suggest that RANKL and OPG are important regulators of not only the terminal differentiation of OC but also their resorptive function. To determine resorptive functions of OC, we further examined the effects of specific inhibitors of H+ -ATPase, bafilomycin A1, and lysosomal cysteine proteinases (cathepsins), E-64, on the ultrastructure, expression of these enzymes and resorptive functions of cultured OC. In bafilomycin A1-treated cultures, OC lacked ruffled borders, and H+ -ATPase expression and resorptive activity were significantly diminished. E-64 treatment did not affect the ultrastructure and the expression of enzyme molecules in OC, but significantly reduced resorption lacuna formation, by inhibition of cathepsin activity. Lastly, we examined the expression of H+ -ATPase, cathepsin K, and matrix metalloproteinase-9 in odontoclasts (OdC) during physiological root resorption in human deciduous teeth, and found that there were no differences in the expression of these molecules between OC and OdC. RANKL was also detected in stromal cells located on resorbing dentine surfaces. This suggests that there is a common mechanism in cellular resorption of mineralized tissues such as bone and teeth. Microsc. Res. Tech. 61:483,495, 2003. © 2003 Wiley-Liss, Inc. [source]