| |||
Catfish Fry (catfish + fry)
Selected AbstractsNursery rearing of the Asian catfish, Clarias macrocephalus (Günther), at different stocking densities in cages suspended in tanks and pondsAQUACULTURE RESEARCH, Issue 13 2002Ruby F Bombeo Abstract Growth and survival of hatchery-bred Asian catfish, Clarias macrocephalus (Günther), fry reared at different stocking densities in net cages suspended in tanks and ponds were measured. The stocking densities used were 285, 571 and 1143 fry m,3 in tanks and 114, 228 and 457 fry m,3 in ponds. Fish were fed a formulated diet throughout the 28-day rearing period. Generally, fish reared in cages in ponds grew faster, with a specific growth rate (SGR) range of 10.3,14.6% day,1, than those in cages suspended in tanks (SGR range 9,11.3% day,1). This could be attributed to the presence of natural zooplankton (copepods and cladocerans) in the pond throughout the culture period, which served as additional food sources for catfish juveniles. In both scenarios, the fish reared at lower densities had significantly higher SGR than fish reared at higher densities. In the pond, the SGR of fish held at 228 and 457 m,3 were similar to each other but were significantly lower than those of fish held at 114 m,3. The zooplankton in ponds consisted mostly of copepods and cladocerans, in contrast to tanks, in which rotifers were more predominant. Per cent survival ranged from 85% to 89% in tanks and from 78% to 87% in ponds and did not differ significantly among stocking densities and between rearing systems. In conclusion, catfish nursery in cages suspended in tanks and ponds is density dependent. Catfish fry reared at 285 m,3 in tanks and at 114 m,3 in ponds had significantly faster growth rates than fish reared at higher densities. However, the desired fingerling size of 3,4 cm total length for stocking in grow-out culture can still be attained at stocking densities of 457 m,3 in nursery pond and 571 m,3 in tanks. [source] Growth and Survival of Channel Catfish, Ictalurus punctatus, Fry Fed Diets with 36 or 45% Total Protein and All Plant or Animal Protein SourcesJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 1 2010Todd D. Sink The basic nutrient requirements for channel catfish, Ictalurus punctatus, are well known, with anecdotal evidence suggesting that catfish fry grow faster and have better survival when fed an animal protein diet. However, the ability to grow channel catfish as small as 11 g on all plant diets and a lack of published data showing the superiority of fish or animal proteins compared to nutritionally equivalent plant proteins for catfish fry indicates that it may be possible to raise channel catfish fry on diets with only plant protein sources. Therefore, an experiment was conducted to compare the effects of 36 and 45% animal protein diets and 36 and 45% all plant protein diets on catfish fry growth and survival. Experimental diets were formulated to contain: 36% all plant protein (primarily from soybean meal); 36% animal and plant protein (,45% of crude protein as fish meal); 45% all plant protein (primarily from soy protein concentrate and soybean meal); and 45% animal and plant protein (,60% of crude protein as fish meal). The catfish were fed at a rate of 20% of body weight daily for 28 d using 24-h automated feeders. Mean ending weights and lengths of catfish fry were not significantly different (P > 0.05) for any treatment. Mean mortality was also not significantly different (P > 0.05) among diets. Regression analysis of growth rate and analysis of variance of final weights revealed that there was no significant difference in growth rate for any of the four diets. These results indicate that growth is not limited in channel catfish fry fed all plant protein diets, and that there is no apparent advantage to the inclusion of animal protein in diets for channel catfish fry. [source] Impact of Copper Sulfate on Plankton in Channel Catfish Nursery PondsJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 1 2009Charles C. Mischke Many fish culturists are interested in applying copper sulfate pentahydrate (CSP) to channel catfish, Ictalurus punctatus, nursery ponds as a prophylactic treatment for trematode infection and proliferative gill disease by killing snails and Dero sp., respectively, before stocking fry. However, copper is an algaecide and may adversely affect phytoplankton and zooplankton populations. We evaluated the effects of prophylactic use of copper sulfate in catfish nursery ponds on water quality and phytoplankton and zooplankton populations. In 2006, treatments of 0 mg/L CSP, 3 mg/L CSP (0.77 mg/L Cu), and 6 mg/L CSP (1.54 mg/L Cu) were randomly assigned to 0.04-ha ponds. In 2007, only treatments of 0 and 3 mg/L CSP were randomly assigned to the 16 ponds. Ponds treated with CSP had significantly higher pH and significantly lower total ammonia concentrations. Treatment of both CSP rates increased total algal concentrations but reduced desirable zooplankton groups for catfish culture. CSP has been shown to be effective in reducing snail populations at the rate used in this study. CSP treatment also appears to be beneficial to the algal bloom, shifting the algal population to green algae and increasing total algal biomass within 1 wk after CSP treatment. Although zooplankton populations were adversely affected, populations of important zooplankton to catfish fry began rebounding 6,12 d after CSP treatment. Therefore, if CSP is used to treat catfish fry ponds of similar water composition used in this study, fry should not be stocked for about 2 wk after CSP application to allow time for the desirable zooplankton densities to begin increasing. [source] Effects of Stocking Sac-Fry and Hatchery-Fed Fry on Production of Fingerling Channel Catfish Ictalurus punctatusJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 1 2001Charles R. Weirich In an attempt to reduce hatchery operating costs, several catfish fingerling producers in Louisiana presently stock fry within 2 d after hatching before yolk absorption is complete. Fry at this stage of development are commonly referred to as "sac-fry." Although research has shown that fry can be stocked at the onset of yolk absorption with no detrimental effects on subsequent fingerling production, stocking sac-fry has been reported to result in reduced fingerling survival. To further investigate this topic, production trials were conducted in experimental outdoor pools over the course of two growing seasons to evaluate the effect of stocking fry of three different ages (2-, 7-, and 14-d post-hatch, DPH) on survival, growth (weight and length), condition factor (K), yield, feed consumption, and feed conversion ratio (FCR) of fingerling catfish. Results from both trials indicated that the age at which fry were stocked had no effect on production characteristics with the exception of growth. Specifically, fingerlings reared from fry stocked at 2 and 7 DPH were significantly larger than fingerlings reared from fry stocked at an age of 14 DPH. These findings suggest that the practice of stocking sac-fry may be a suitable alternative to the traditional procedure of holding and feeding fry under hatchery conditions prior to stocking. However, in order to fully evaluate the effects of early-age stocking of catfish fry on fingerling production, additional studies must be conducted under pond conditions. Furthermore, these studies must be coupled with a rigorous economic analysis before the practice of stocking sac-fry can be recommended to the catfish industry. [source] |