Catchment Response (catchment + response)

Distribution by Scientific Domains


Selected Abstracts


Soil piping and catchment response

HYDROLOGICAL PROCESSES, Issue 12 2010
J. A. A. Jones
Abstract Over the 40 years, since soil piping was first considered to be a potential factor in the hydrological response of catchments, research has revealed a considerable amount about its hydrological role and its geographical, climatic and pedological distribution. Piping has been shown to be a major factor supporting the hypothesis that subsurface flow can be a significant contributor to quickflow by field experiments ranging from the United Kingdom to Canada, India and China. This research has demonstrated that, at least in some areas, soil pipes may contribute up to nearly 50% of stormwater discharge. Piping processes therefore merit inclusion within rainfall,runoff simulation models, but this has yet to be achieved. Some progress has been made in modelling pipeflow itself, but integration within a catchment model presents major problems, not least in quantifying or parameterizing the nature and distribution of pipe networks. The wider environmental implications of soil piping are also only just beginning to be recognized. These range from the effects of changing residence times on water chemistry, especially on the acidification of surface waters, to the effects of hillslope drainage patterns on soil development and vegetation diversity. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Towards a simple dynamic process conceptualization in rainfall,runoff models using multi-criteria calibration and tracers in temperate, upland catchments

HYDROLOGICAL PROCESSES, Issue 3 2010
C. Birkel
Abstract Empirically based understanding of streamflow generation dynamics in a montane headwater catchment formed the basis for the development of simple, low-parameterized, rainfall,runoff models. This study was based in the Girnock catchment in the Cairngorm Mountains of Scotland, where runoff generation is dominated by overland flow from peaty soils in valley bottom areas that are characterized by dynamic expansion and contraction of saturation zones. A stepwise procedure was used to select the level of model complexity that could be supported by field data. This facilitated the assessment of the way the dynamic process representation improved model performance. Model performance was evaluated using a multi-criteria calibration procedure which applied a time series of hydrochemical tracers as an additional objective function. Flow simulations comparing a static against the dynamic saturation area model (SAM) substantially improved several evaluation criteria. Multi-criteria evaluation using ensembles of performance measures provided a much more comprehensive assessment of the model performance than single efficiency statistics, which alone, could be misleading. Simulation of conservative source area tracers (Gran alkalinity) as part of the calibration procedure showed that a simple two-storage model is the minimum complexity needed to capture the dominant processes governing catchment response. Additionally, calibration was improved by the integration of tracers into the flow model, which constrained model uncertainty and improved the hydrodynamics of simulations in a way that plausibly captured the contribution of different source areas to streamflow. This approach contributes to the quest for low-parameter models that can achieve process-based simulation of hydrological response. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Downward approach to hydrological prediction

HYDROLOGICAL PROCESSES, Issue 11 2003
Murugesu Sivapalan
Abstract This paper presents an overview of the ,downward approach' to hydrologic prediction and attempts to provide a context for the papers appearing in this special issue. The downward approach is seen as a necessary counterpoint to the mechanistic ,reductionist' approach that dominates current hydrological model development. It provides a systematic framework to learning from data, including the testing of hypotheses at every step of analysis. It can also be applied in a hierarchical manner: starting from exploring first-order controls in the modelling of catchment response, the model complexity can then be increased in response to deficiencies in reproducing observations at different levels. The remaining contributions of this special issue present a number of applications of the downward approach, including development of parsimonious water balance models with changing time scales by learning from signatures extracted from observed streamflow data at different time scales, regionalization of model parameters, parameterization of effects of sub-grid variability, and standardized statistical approaches to analyse data and to develop model structures. This review demonstrates that the downward approach is not a rigid methodology, but represents a generic framework. It needs to play an increasing role in the future in the development of hydrological models at the catchment scale. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Rainfall,runoff modelling of ephemeral streams in the Valencia region (eastern Spain)

HYDROLOGICAL PROCESSES, Issue 17 2002
Ana M. Camarasa
Abstract This paper presents preliminary results from the application of a transfer-function rainfall,runoff model to ephemeral streams in Mediterranean Spain. Flow simulations have been conducted for two small catchments (Carraixet and Poyo basins), located in close proximity to one another yet with significantly different geological characteristics. Analysis of flow simulations for a number of high-flow events has revealed the dominant influence of the rainfall on the catchment response, particularly for high-rainfall events. Particular success has been attained modelling the highest magnitude events in both catchments and for all events in the faster responding (Poyo) catchment. In order to investigate the viability of the model for forecasting floods in ungauged catchments, additional investigations have been conducted by calibrating the model for one catchment (donor catchment) and then applying it to another (receptor catchment). The results indicate that this can be successful when either the donor catchment is a fast response catchment or when the model is calibrated using a high-magnitude event in the donor catchment, providing that the modelled receptor catchment event is of a lower magnitude. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Comparing the scores of hydrological ensemble forecasts issued by two different hydrological models

ATMOSPHERIC SCIENCE LETTERS, Issue 2 2010
A. Randrianasolo
Abstract A comparative analysis is conducted to assess the quality of streamflow forecasts issued by two different modeling conceptualizations of catchment response, both driven by the same weather ensemble prediction system (PEARP Météo-France). The two hydrological modeling approaches are the physically based and distributed hydrometeorological model SIM (Météo-France) and the lumped soil-moisture-accounting type rainfall-runoff model GRP (Cemagref). Discharges are simulated at 211 catchments in France over 17 months. Skill scores are computed for the first 2 days of forecast range. The results suggest good performance of both hydrological models and illustrate the benefit of streamflow data assimilation for ensemble short-term forecasting. Copyright © 2010 Royal Meteorological Society [source]


Long-term landscape evolution: linking tectonics and surface processes

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2007
Paul Bishop
Abstract Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid-20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process-based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long-term landscape evolution between the 1950s and about 1990, but it essentially ,looked back' to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long-term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re-forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high-elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low-temperature thermochronology, and in particular apatite fission track analysis and (U,Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U,Th)/He analysis has been used to determine the antiquity of major, long-wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ,ages' of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ,holy grail' in geomorphology in that they enable determination of ,dates and rates' of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (,detrital CICs'). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ,drive' rock uplift and thus even influence sub-surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long-term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian-type of landscape evolution characterized by slope lowering is inevitably ,confirmed' by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre-established criteria and tests. Confirmation by these more sophisticated Davisian-type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady-state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack-type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post-orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non-steady-state (or transient) landscapes. Such post-orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re-surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large-scale geomorphology is on the threshold of another ,golden' era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd. [source]


How does alluvial sedimentation at range fronts modify the erosional dynamics of mountain catchments?

BASIN RESEARCH, Issue 3 2005
S. Carretier
At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ,transport-limited', ,detachment-limited' or ,mixed' transport conditions in mountains at dynamic equilibrium. In addition, two end-member algorithms (the channellized-flow and the sheet-flow regimes) have been included for the alluvial fan-flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated. Our results indicate that addition of an alluvial apron increases the long-term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one). Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick-points in the river profile in the case of ,detachment-limited' and ,mixed' river conditions, which could be mistaken for tectonically induced knick-points. ,Transport-limited' conditions do not create such knick-points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto-cyclic erosion pulses in the catchment, capable of generating incision,aggradation cycles. [source]