Catalyst Synthesis (catalyst + synthesis)

Distribution by Scientific Domains


Selected Abstracts


Recent Advances in the Syntheses and Applications of Molybdenum and Tungsten Alkylidene and Alkylidyne Catalysts for the Metathesis of Alkenes and Alkynes

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2007
Richard
Abstract The last several years have produced some key advances in the area of alkene and alkyne metathesis by high oxidation state alkylidene and alkylidyne complexes along with new applications in organic and polymer chemistry. In this review we cover some of these developments and applications. The first part of this review concerns developments in catalyst synthesis and new catalysts. The second part concerns notable applications in organic and polymer chemistry. We discuss only high oxidation state alkylidene and alkylidyne chemistry of relevance to alkene or alkyne metathesis reactions and favor studies in the homogeneous phase. [source]


Polymerization of Methyl Acrylate by a 2,6-Bis(2-benzimidazyl)pyridine Zirconium Dichloride/MAO Catalyst System

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 21 2006
Hyun Yong Cho
Abstract Summary: A novel non-metallocene Zr(IV) complex bearing a bianionic form of the ligand 2,6-bis(2-benzimidazolyl)pyridine is synthesized. This Zr complex is an active catalyst for the polymerization of MA via coordination polymerization in the presence of methylaluminoxane MAO. The activity and MWD are increased as the polymerization temperature increases. The maximum activity is observed at Al/Zr molar ratio of 100 and the deactivation is shown above 100, resulting from an inactive bimetallic complex between catalyst and free TMA presented in MAO. Decrease in MWD is observed with higher MAO concentration due to its role in chain transfer during the chain propagation. The reaction of the ligand and catalyst synthesis. [source]


High-Throughput Synthesis of New Ni(II), Pd(II), and Co(II) Catalysts and Polymerization of Norbornene Utilizing the Self-Made Parallel Polymerization Reactor System

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 1 2004
Hyun Yong Cho
Abstract Summary: We report the development of new Ni(II), Pd(II), and Co(II) catalysts containing ligands of pyrazolylpyridine derivatives by combinatorial and high-throughput synthesis technology. Vinyl type polynorbornene was polymerized utilizing the self-made parallel polymerization reactor system. The Ni(II) catalyst 1 has a polymerization activity of 266.7 kgpolymer,·,molcat,1,·,h,1. We introduce a fast way to conduct catalyst synthesis and high-throughput screening for polymerization. The self-made parallel polymerization reactor system. [source]


Efficient fuel cell catalysts emerging from organometallic chemistry

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 4 2010
Helmut Bönnemann
Abstract During the last few decades organometallic methodologies have generated a number of highly effective electrocatalyst systems based on mono- and bimetallic nanosparticles having controlled size, composition and structure. In this microreview we summarize our results in fuel cell catalyst preparation applying triorganohydroborate chemistry, ,reductive particle stabilization' using organoaluminum compounds, and the controlled decomposition of organometallic complexes. The advantages of organometallic catalyst preparation pathways are exemplified with RuPt nanoparticles@C as promising anode catalysts to be used in direct methanol oxidation fuel cells (DMFC) or in polymer electrolyte fuel cells (PEMFC) running with CO-contaminated H2 as the feed. Recent findings with highly efficient PtCo3@C fuel cell catalysts applied for the oxygen reduction reaction (ORR) and with the effect of Se-doping on Ru@C ORR catalysts clearly demonstrate the benefits of organometallic catalyst synthesis. Copyright © 2010 John Wiley & Sons, Ltd. [source]