| |||
Caspase Cascade (caspase + cascade)
Selected AbstractsProteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2006Alessio Nencioni Dr. Abstract Proteasome inhibitors possess potent antitumor activity against a broad spectrum of human malignancies. However, the effects of these compounds on the immune system still have to be clearly determined. In the present study, we have investigated the effects of proteasome inhibitors on dendritic cells (DC), antigen-presenting cells playing a key role in the initiation of immune responses. Exposure to the proteasome inhibitors bortezomib, MG132 or epoxomicin was found to promote apoptosis of human monocyte-derived DC and to reduce the yield of viable DC when given to monocytes early during differentiation to DC. DC apoptosis via proteasome inhibition was accompanied by mitochondria disruption and subsequent activation of the caspase cascade. Up-regulation and intracellular redistribution of Bcl-2-associated X,protein (Bax), a pro-apoptotic Bcl-2 family protein, were observed in DC treated with these compounds and represent a suitable mechanism leading to activation of the intrinsic apoptotic pathway. Finally, active protein synthesis was found to represent an upstream prerequisite for DC apoptosis induced by proteasome inhibitors, since the translation inhibitor cycloheximide blocked all of the steps of the observed apoptotic response. In conclusion, induction of apoptosis in DC may represent a novel mechanism by which proteasome inhibitors affect the immune response at the antigen-presenting cell level. [source] A folding variant of human ,-lactalbumin induces mitochondrial permeability transition in isolated mitochondriaFEBS JOURNAL, Issue 1 2001Camilla Köhler A human milk fraction containing multimeric ,-lactalbumin (MAL) is able to kill cells via apoptosis. MAL is a protein complex of a folding variant of ,-lactalbumin and lipids. Previous results have shown that upon treatment of transformed cells, MAL localizes to the mitochondria and cytochrome c is released into the cytosol. This is followed by activation of the caspase cascade. In this study, we further investigated the involvement of mitochondria in apoptosis induced by the folding variant of ,-lactalbumin. Addition of MAL to isolated rat liver mitochondria induced a loss of the mitochondrial membrane potential (,,m), mitochondrial swelling and the release of cytochrome c. These changes were Ca2+ -dependent and were prevented by cyclosporin A, an inhibitor of mitochondrial permeability transition. MAL also increased the rate of state 4 respiration in isolated mitochondria by exerting an uncoupling effect. This effect was due to the presence of fatty acids in the MAL complex because it was abolished completely by BSA. BSA delayed, but failed to prevent, mitochondrial swelling as well as dissipation of ,,m, indicating that the fatty acid content of MAL facilitated, rather than caused, these effects. Similar results were obtained with HAMLET (human ,-lactalbumin made lethal to tumour cells), which is native ,-lactalbumin converted in vitro to the apoptosis-inducing folding variant of the protein in complex with oleic acid. Our findings demonstrate that a folding variant of ,-lactalbumin induces mitochondrial permeability transition with subsequent cytochrome c release, which in transformed cells may lead to activation of the caspase cascade and apoptotic death. [source] Abstract no.: 10 DNA fragmentation, but not caspase-3 activation or PARP-1 cleavage, combined with macrophage immunostaining as a tool to study phagocytosis of apoptotic cells in situFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2006Dorien M. Schrijvers Efficient phagocytosis of cells undergoing apoptosis by macrophages is important to prevent immunological responses and development of chronic inflammatory disorders, such as systemic lupus erythematosus, cystic fibrosis or atherosclerosis. To study phagocytosis of apoptotic cells (AC) by macrophages in tissue, we validated different apoptosis markers (DNA fragmentation, caspase-3 activation and cleavage of its substrate poly (ADP-ribose) polymerase-1) in combination with macrophage immunostaining. Human tonsils were used as a model because they show a high apoptosis frequency under physiological conditions as well as efficient phagocytosis of AC by macrophages. On the other hand, advanced human atherosclerotic plaques were examined since phagocytosis of AC in a plaque is severely impaired. Our results demonstrate that the presence of non-phagocytized TUNEL-positive AC represents a suitable marker for poor phagocytosis by macrophages in situ. Other markers for apoptosis, such as cleavage of caspase-3 or PARP-1, should not be used to assess phagocytosis efficiency, because activation of the caspase cascade and cleavage of their substrates can occur in AC when they have not yet been phagocytized by macrophages. [source] Granzyme B: a natural born killerIMMUNOLOGICAL REVIEWS, Issue 1 2003Sarah J. Lord Summary:, A main pathway used by cytotoxic T lymphocytes (CTLs) and natural killer cells to eliminate pathogenic cells is via exocytosis of granule components in the direction of the target cell, delivering a lethal hit of cytolytic molecules. Amongst these, granzyme B and perforin have been shown to induce CTL-mediated target cell DNA fragmentation and apoptosis. Once released from the CTL, granzyme B binds its receptor, the mannose-6-phosphate/insulin-like growth factor II receptor, and is endocytosed but remains arrested in endocytic vesicles until released by perforin. Once in the cytosol, granzyme B targets caspase-3 directly or indirectly through the mitochondria, initiating the caspase cascade to DNA fragmentation and apoptosis. Caspase activity is required for apoptosis to occur; however, in the absence of caspase activity, granzyme B can still initiate mitochondrial events via the cleavage of Bid. Recent work shows that granzyme B-mediated release of apoptotic factors from the mitochondria is essential for the full activation of caspase-3. Thus, granzyme B acts at multiple points to initiate the death of the offending cell. Studies of the granzyme B death receptor and internal signaling pathways may lead to critical advances in cell transplantation and cancer therapy. [source] Silencing of APAF-1 in B-CLL results in poor prognosis in the case of concomitant p53 mutationINTERNATIONAL JOURNAL OF CANCER, Issue 9 2006Isrid Sturm Abstract Apoptosis protease-activating factor 1 (APAF-1), a transcriptional target of p53, is a cytosolic adaptor protein that links the mitochondrial apoptosis pathway to the caspase cascade. Here, we aimed to study the impact of APAF-1 expression levels on cell death induced by anticancer drugs or ionizing irradiation (IR) and disease prognosis in B-type chronic lymphocytic leukemia (B-CLL) patients. Samples from 138 patients with B-CLL were investigated for APAF-1 expression and p53 mutations. The results were related to survival data, in vitro cytotoxicity of various cytotoxic drugs and IR and clinico-pathological data. Variable APAF-1 expression was observed in all investigated B-CLL samples. Reduction in APAF-1 expression was observed at both mRNA and protein level indicating transcriptional silencing whereas mutation of p53 or the immunoglobulin heavy chain variable genes (IgHV) had no impact on APAF-1 expression. Surprisingly, APAF-1 loss did not result in resistance to cytotoxic therapies. Likewise, APAF-1 downregulation on its own showed no impact on disease prognosis. Nevertheless, a poor prognosis was observed in patients with loss of APAF-1 expression and additional p53 mutation. Thus, loss of APAF-1 may become relevant when additional core apoptosis signaling components are disrupted. © 2005 Wiley-Liss, Inc. [source] Chemosensitization in non-small cell lung cancer cells by IKK inhibitor occurs via NF-,B and mitochondrial cytochrome c cascadeJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 11-12 2009Xianqing Jin Abstract In this study, we demonstrated with mechanistic evidence that parthenolide, a sesquiterpene lactone, could antagonize paclitaxel-mediated NF-,B nuclear translocation and activation by selectively targeting I-,B kinase (IKK) activity. We also found that parthenolide could target IKK activity and then inhibit NF-,B; this promoted cytochrome c release and activation of caspases 3 and 9. Inhibition of caspase activity blocked the activation of caspase cascade, implying that the observed synergy was related to caspases 3 and 9 activation of parthenolide. In contrast, paclitaxel individually induced apoptosis via a pathway independent of the mitochondrial cytochrome c cascade. Finally, exposure to parthenolide resulted in the inhibition of several NF-,B transcript anti-apoptotic proteins such as c-IAP1 and Bcl-xl. These data strengthen the rationale for using parthenolide to decrease the apoptotic threshold via caspase-dependent processes for treatment of non-small cell lung cancer with paclitaxel chemoresistance. [source] Hypoxia-induced apoptosis and tube breakdown are regulated by p38 MAPK but not by caspase cascade in an in vitro capillary model composed of human endothelial cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007Toshiro Ohta In order to improve medical treatment of ischemic injury such as myocardial infarction, it is important to elucidate hypoxia-induced changes to endothelial cells. An in vitro blood vessel model, in which HUVECs are stimulated to form a network of capillary-like tubes, was used to analyze hypoxia-induced morphological and biochemical changes. When exposed to hypoxia, the network of capillary tubes broke down into small clusters. This tube breakdown was accompanied by chromatin condensation and cell nuclear fragmentation, morphological markers of apoptosis, and activation of two apoptotic signals, caspase-3 and p38. We investigated what roles caspase cascade and p38 play in hypoxia-induced apoptosis and tube breakdown by using zVAD-fmk and SB203580, specific inhibitors of these two apoptotic signals, respectively. Chromatin condensation and cell nuclear fragmentation and tube breakdown were effectively inhibited by SB203580, but not by zVAD-fmk. SB203580 caused dephosphorylation of p38, which indicates that p38 was autophosphorylated. Inhibition by zVAD-fmk caused slight MW increase in p17 and emergence of p19, which indicates that the inhibitor caused partial processing of caspase-3. Inhibition of p38 suppressed activation of caspase-3 but not vice versa. In addition, these two inhibitors were shown to differentially inhibit cleavage of so-called caspase substrates. SB203580 inhibited cleavage of PARP and lamin A/C, while zVAD-fmk inhibited cleavage of lamin A/C but not that of PARP. Taken together, these results show that p38 is located upstream of caspase cascade and that, although caspase-3 is activated, a p38-regulated caspase-independent pathway is crucial for the execution of hypoxia-induced apoptosis and tube breakdown. J. Cell. Physiol. 211: 673,681, 2007. © 2007 Wiley-Liss, Inc. [source] Participation of various kinases in staurosporine-induced apoptosis of RAW 264.7 cellsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2002Kouya Yamaki Staurosporine induced apoptosis of RAW 264.7 cells, a mouse macrophage-like cell line, as determined by DNA fragmentation, the increase of annexin V-stained cells, and the cleavage of poly(ADP- ribose)polymerase (PARP), a substrate of caspase. Analysis of the increase in the percentage of sub-G1 cells revealed that the DNA fragmentation occurred in a time- and concentration-dependent manner at 0.021,2.1 ,m of staurosporine. Staurosporine induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) but suppressed spontaneous phosphorylation of p44/42 MAPK. The p38 MAPK inhibitor SB203580, the MAPK/extracellular signal-regulated kinase kinase inhibitor PD98059 and the phosphatidylinositol 3-kinase (P13K) inhibitor LY294002 potentiated the staurosporine-induced PARP cleavage and DNA fragmentation. The protein kinase A (PKA) inhibitor H-89 potentiated the staurosporine-induced DNA fragmentation without potentiating the PARP cleavage. In contrast, the protein kinase C (PKC) inhibitor Ro-31,8425 suppressed the PARP cleavage and DNA fragmentation. These findings suggested that staurosporine induces apoptosis via the caspase cascade in RAW 264.7 cells. The staurosporine-induced apoptosis is positively regulated by PKC, negatively regulated by p38 MAPK, p44/42 MAPK and P13K via the caspase cascade, and negatively regulated by PKA without regulation of caspase activation. [source] Intracellular survival pathways in the liverLIVER INTERNATIONAL, Issue 10 2006Tom Luedde Abstract: Recent studies have drawn attention to cytokines as important modulators of hepatocyte cell death during acute and chronic liver disease. Through interaction with cell surface receptors, they activate specific intracellular pathways that influence cell fate in different manners. For example, tumor necrosis factor not only induces proapoptotic signals via the caspase cascade but also activates intracellular survival pathways, namely the nuclear factor (NF)-,B pathway. In this article, we will focus on the function of the NF-,B pathway in liver physiology and pathology. Especially, recent data based on experiments with genetically modified mice will be discussed, which demonstrated important and controversial functions of this pathway e.g. in cytokine-mediated hepatocyte apoptosis, ischemia-reperfusion injury, liver regeneration and the development of hepatocellular carcinoma. Moreover, the role of the interleukin-6 pathway and its possible protective function in the context of liver failure will be summarized. [source] The flavonoid tangeretin activates the unfolded protein response and synergizes with imatinib in the erythroleukemia cell line K562MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 6 2010Sofie Lust Abstract We explored the mechanism of cell death of the polymethoxyflavone tangeretin (TAN) in K562 breakpoint cluster region-abelson murine leukemia (Bcr-Abl+) cells. Flow cytometric analysis showed that TAN arrested the cells in the G2/M phase and stimulated an accumulation of the cells in the sub-G0 phase. TAN-induced cell death was evidenced by poly(ADP)-ribose polymerase cleavage, DNA laddering fragmentation, activation of the caspase cascade and downregulation of the antiapoptotic proteins Mcl-1 and Bcl-xL. Pretreatment with the pancaspase inhibitor Z-VAD-FMK_blocked caspase activation and cell cycle arrest but did not inhibit apoptosis which suggest that other cell killing mechanisms like endoplasmic reticulum (ER)-associated cell death pathways could be involved. We demonstrated that TAN-induced apoptosis was preceded by a rapid activation of the proapoptotic arm of the unfolded protein response, namely PKR-like ER kinase. This was accompanied by enhanced levels of glucose-regulated protein of 78,kDa and of spliced X-box binding protein 1. Furthermore, TAN sensitized K562 cells to the cell killing effects of imatinib via an apoptotic mechanism. In conclusion, our results suggest that TAN is able to induce apoptosis in Bcr-Abl+ cells via cell cycle arrest and the induction of the unfolded protein response, and has synergistic cytotoxicity with imatinib. [source] Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibitionNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 5 2005S. Sathasivam There is increasing evidence that apoptosis or a similar programmed cell death pathway is the mechanism of cell death responsible for motor neurone degeneration in amyotrophic lateral sclerosis. Knowledge of the relative importance of different caspases in the cell death process is at present incomplete. In addition, there is little information on the critical point of the death pathway when the process of dying becomes irreversible. In this study, using the well-established NSC34 motor neurone-like cell line stably transfected with empty vector, normal or mutant human Cu-Zn superoxide dismutase (SOD1), we have characterized the activation of the caspase cascade in detail, revealing that the activation of caspases-9, -3 and -8 are important in motor neurone death and that the presence of mutant SOD1 causes increased activation of components of the apoptotic cascade under both basal culture conditions and following oxidative stress induced by serum withdrawal. Activation of the caspases identified in the cellular model has been confirmed in the G93A SOD1 transgenic mice. Furthermore, investigation of the effects of anti-apoptotic neuroprotective agents including specific caspase inhibitors, minocycline and nifedipine, have supported the importance of the mitochondrion-dependent apoptotic pathway in the death process and revealed that the upstream caspase cascade needs to be inhibited if useful neuro-protection is to be achieved. [source] FTY720 Attenuates Hepatic Ischemia-Reperfusion Injury in Normal and Cirrhotic LiversAMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2005Kwan Man Hepatic ischemia-reperfusion injury is an inevitable consequence during liver surgery. The outcome is particularly poor in cirrhotic livers, which are more prone to hepatic ischemia-reperfusion injury. We aim to study whether FTY720 could attenuate hepatic ischemia-reperfusion injury both in normal and in cirrhotic livers. We applied a 70% liver-ischemia (60 min) model in rats with normal or cirrhotic livers. FTY720 was given 20 min before ischemia and 10 min before reperfusion (1 mg/kg, i.v.). Liver tissues and blood were sampled at 20 min, 60 min, 90 min, 6 h and 24 h after reperfusion for detection of MAPK-Egr-1, Akt pathways and caspase cascade. Hepatic ultrastructure and apoptosis were also compared. FTY720 significantly improved liver function in the rats with normal and cirrhotic livers. Akt pathway was activated at 6 and 24 h after reperfusion. FTY720 significantly down-regulated Egr-1, ET-1, iNOS and MIP-2 accompanied with up-regulation of A20, IL-10, HO-1 and Hsp70. MAPK (Raf-MEK-Erk) pathway was down-regulated. Hepatic ultrastructure was well maintained and fewer apoptotic liver cells were found in the FTY720 groups. In conclusion, FTY720 attenuates ischemia-reperfusion injury in both normal and cirrhotic livers by activation of cell survival Akt signaling and down-regulation of Egr-1 via Raf-MEK-Erk pathway. [source] Geranylgeraniol, an Intermediate Product in Mevalonate Pathway, Induces Apoptotic Cell Death in Human Hepatoma Cells: Death Receptor-independent Activation of Caspase-8 with Down-regulation of Bcl-xL ExpressionCANCER SCIENCE, Issue 9 2001Yoshio Takeda Geranylgeraniol (GGOH), an intermediate of mevalonate metabolism, is known to induce apoptosis in various lines of cancer cells. The present study was undertaken to clarify the signaling pathways of apoptosis induced by GGOH in human hepatoma cells. HuH-7 human hepatoma cells were incubated in the absence or presence of GGOH. Activation of caspase-8/-9/-3 in HuH-7 cells was found after 8 h treatment with GGOH, at which tune DNA fragmentation and loss of mitochondrial transmembrane potential (,,m) occurred. HuH-7 cells do not express Bcl-2; however, down-regulation of Bcl-xL expression preceded activation of the caspase cascade in GGOH-treated HuH-7 cells, while Bax expression was not changed by GGOH treatment. Addition of caspase inhibitors restored the decreased cell viability of HuH-7 cells by GGOH, including ,,m, to the baseline level, which indicated that caspase triggers mitochondria-dependent apoptotic pathways in GGOH-treated HuH-7 cells. Similarly, GGOH-mediated apoptosis of HuH-7 cells was clearly prevented by coadministration of ursodeoxycholic acid (UDCA), which led to restoration of the level of Bcl-xL expression. Activation of caspase-8/-9/-3, as well as ,,m, by GGOH treatment was suppressed by addition of UDCA. Our results indicate that activation of the caspase cascade initiating from caspase-8, which could be accelerated by down-regulation of Bcl-xL expression, plays a key role in an apoptotic process induced by GGOH in human hepatoma cells. [source] The water extract of Omija protects H9c2 cardiomyoblast cells from hydrogen peroxide through prevention of mitochondrial dysfunction and activation of caspases pathwayPHYTOTHERAPY RESEARCH, Issue 1 2007Channy Park Abstract The water extract of Omija (Omija) has been used traditionally in the treatment of ischemic damage of the heart and brain tissues. However, little is known about the mechanism by which it rescues myocardial cells from oxidative stress. This study was designed to investigate the protective mechanisms of Omija on H2O2 -induced cytotoxicity in H9c2 cardiomyoblast cells. Treatment with H2O2 resulted in the death of H9c2 cells, characterized by apparent apoptotic features, including fragmentation of the nucleus and an increase in the sub-G0/G1 fraction of the cell cycle. However, Omija markedly suppressed the apoptotic characteristics of H9c2 cells induced by H2O2. In addition, Omija suppressed the features of mitochondrial dysfunction, including changes in the mitochondrial membrane potential and cytosolic release of cytochrome c in H2O2 -treated cells. Treatment with Omija further inhibited the catalytic activation of caspase-9 and caspase-3 and induction of Fas by H2O2. Taken together, these data indicate that the water extract of Omija protects H9c2 cardiomyoblast cells from oxidative stress of H2O2 through inhibition of mitochondrial dysfunction and activation of intrinsic caspase cascades, including caspase-3 and caspase-9. Copyright © 2006 John Wiley & Sons, Ltd. [source] |