| |||
Cascade Range (cascade + range)
Selected AbstractsSNOWSHED CONTRIBUTIONS TO THE NOOKSACK RIVER WATERSHED, NORTH CASCADES RANGE, WASHINGTON,GEOGRAPHICAL REVIEW, Issue 2 2002ANDREW BACH ABSTRACT. Meltwater contributes to watershed hydrology by increasing summer discharge, delaying the peak spring runoff, and decreasing variability in runoff. High-elevation snowshed meltwater, including glacier-derived input, provides an estimated 26.9 percent of summer streamflow (ranging annually from 16 to 40 percent) in the Nooksack River Basin above the town of Deming, Washington, in the North Cascades Range. The Nooksack is a major spawning river for salmon and once was important for commercial, recreational, and tribal fishing, and in the past its flow met the demands of both human and aquatic ecosystems. But the river is already legally overallocated, and demand is rising in response to the rapidly growing human population. Variability in snowshed contributions to the watershed is considerable but has increased from an average of 25.2 percent in the 1940s to an average of 30.8 percent in the 1990s. Overall stream discharge shows no significant increase, suggesting that the glaciers are melting, and/or precipitation levels (or other hydrologic factors) are decreasing at about the same rate. If glaciers continue to recede, they may disappear permanently from the Cascades. If that occurs, their summer contribution to surface-water supplies will cease, and water-management policies will need drastic revision. [source] Dating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA,EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2007Thomas C. Pierson Abstract Dating of dynamic, young (<500 years) geomorphic landforms, particularly volcanofluvial features, requires higher precision than is possible with radiocarbon dating. Minimum ages of recently created landforms have long been obtained from tree-ring ages of the oldest trees growing on new surfaces. But to estimate the year of landform creation requires that two time corrections be added to tree ages obtained from increment cores: (1) the time interval between stabilization of the new landform surface and germination of the sampled trees (germination lag time or GLT); and (2) the interval between seedling germination and growth to sampling height, if the trees are not cored at ground level. The sum of these two time intervals is the colonization time gap (CTG). Such time corrections have been needed for more precise dating of terraces and floodplains in lowland river valleys in the Cascade Range, where significant eruption-induced lateral shifting and vertical aggradation of channels can occur over years to decades, and where timing of such geomorphic changes can be critical to emergency planning. Earliest colonizing Douglas fir (Pseudotsuga menziesii) were sampled for tree-ring dating at eight sites on lowland (<750 m a.s.l.), recently formed surfaces of known age near three Cascade volcanoes , Mount Rainier, Mount St. Helens and Mount Hood , in southwestern Washington and northwestern Oregon. Increment cores or stem sections were taken at breast height and, where possible, at ground level from the largest, oldest-looking trees at each study site. At least ten trees were sampled at each site unless the total of early colonizers was less. Results indicate that a correction of four years should be used for GLT and 10 years for CTG if the single largest (and presumed oldest) Douglas fir growing on a surface of unknown age is sampled. This approach would have a potential error of up to 20 years. Error can be reduced by sampling the five largest Douglas fir instead of the single largest. A GLT correction of 5 years should be added to the mean ring-count age of the five largest trees growing on the surface being dated, if the trees are cored at ground level. This correction would have an approximate error of ±5 years. If the trees are cored at about 1·4 m above the ground surface (breast height), a CTG correction of 11 years should be added to the mean age of the five sampled trees (with an error of about ±7 years). Published in 2006 by John Wiley & Sons, Ltd. [source] Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USAJOURNAL OF BIOGEOGRAPHY, Issue 8 2005William J. Zielinski Abstract Aim, Mammalian carnivores are considered particularly sensitive indicators of environmental change. Information on the distribution of carnivores from the early 1900s provides a unique opportunity to evaluate changes in their distributions over a 75-year period during which the influence of human uses of forest resources in California greatly increased. We present information on the distributions of forest carnivores in the context of two of the most significant changes in the Sierra Nevada during this period: the expansion of human settlement and the reduction in mature forests by timber harvest. Methods, We compare the historical and contemporary distributions of 10 taxa of mesocarnivores in the conifer forests of the Sierra Nevada and southern Cascade Range by contrasting the distribution of museum and fur harvest records from the early 1900s with the distribution of detections from baited track-plate and camera surveys conducted from 1996 to 2002. A total of 344 sample units (6 track plates and 1 camera each) were distributed systematically across c. 3,000,000 ha area over a 7-year period. Results, Two species, the wolverine (Gulo gulo) and the red fox (Vulpes vulpes), present in the historical record for our survey area, were not detected during the contemporary surveys. The distributions of 3 species (fisher [Martespennanti], American marten [M. americana], and Virginia opossum [Didelphisvirginiana]) have substantially changed since the early 1900s. The distributions of fishers and martens, mature-forest specialists, appeared to have decreased in the northern Sierra Nevada and southern Cascade region. A reputed gap in the current distribution of fishers was confirmed. We report for the first time evidence that the distribution of martens has become fragmented in the southern Cascades and northern Sierra Nevada. The opossum, an introduced marsupial, expanded its distribution in the Sierra Nevada significantly since it was introduced to the south-central coast region of California in the 1930s. There did not appear to be any changes in the distributions of the species that were considered habitat generalists: gray fox (Urocyon cinereoargenteus), striped skunk (Mephitis mephitis), western spotted skunk (Spilogale gracilis), or black bear (Ursus americanus). Detections of raccoons (Procyon lotor) and badgers (Taxidea taxus) were too rare to evaluate. Contemporary surveys indicated that weasels (M. frenata and M. erminea) were distributed throughout the study area, but historical data were not available for comparison. Main conclusions, Two species, the wolverine and Sierra Nevada red fox, were not detected in contemporary surveys and may be extirpated or in extremely low densities in the regions sampled. The distributions of the mature forest specialists (marten and fisher) appear to have changed more than the distributions of the forest generalists. This is most likely due to a combination of loss of mature forest habitat, residential development and the latent effects of commercial trapping. Biological characteristics of individual species, in combination with the effect of human activities, appear to have combined to affect the current distributions of carnivores in the Sierra Nevada. Periodic resampling of the distributions of carnivores in California, via remote detection methods, is an efficient means for monitoring the status of their populations. [source] Short-Term Response of Land Birds to Ponderosa Pine RestorationRESTORATION ECOLOGY, Issue 4 2007William L. Gaines Abstract We monitored the short-term (>3 years) response of land birds to forest restoration treatments in Ponderosa pine forests located on the east slope of the North Cascade Range. Restoration treatments were designed to create stand structure and composition similar to pre-settlement forests, which were influenced by a frequent fire regime. Overall, avian community composition was changed as a result of the treatments. Cassin's Finch, Chipping Sparrow, and Yellow-rumped Warbler were found at higher densities in treated stands, whereas Mountain Chickadee, Western Tanager, and Red-breasted Nuthatch had higher densities in untreated stands. White-headed Woodpecker and Western Bluebird were only detected in the treated stands. Brown-headed Cowbird showed no response to treatments. We detected changes in the density of four of five foraging guilds in response to restoration treatments. Tree seedeaters, low understory and ground insectivores, and aerial insectivores all increased in density in treated stands. Overall, bark insectivores showed no density response to treatments. Tree foliage insectivore density was lower in treated than in untreated stands. Overall avian density, density of neotropical migrants, and density of some focal species were higher in treated stands. Monitoring should be continued to understand the longer-term (5,10 year) responses of land birds and to guide future forest restoration efforts. [source] SNOWSHED CONTRIBUTIONS TO THE NOOKSACK RIVER WATERSHED, NORTH CASCADES RANGE, WASHINGTON,GEOGRAPHICAL REVIEW, Issue 2 2002ANDREW BACH ABSTRACT. Meltwater contributes to watershed hydrology by increasing summer discharge, delaying the peak spring runoff, and decreasing variability in runoff. High-elevation snowshed meltwater, including glacier-derived input, provides an estimated 26.9 percent of summer streamflow (ranging annually from 16 to 40 percent) in the Nooksack River Basin above the town of Deming, Washington, in the North Cascades Range. The Nooksack is a major spawning river for salmon and once was important for commercial, recreational, and tribal fishing, and in the past its flow met the demands of both human and aquatic ecosystems. But the river is already legally overallocated, and demand is rising in response to the rapidly growing human population. Variability in snowshed contributions to the watershed is considerable but has increased from an average of 25.2 percent in the 1940s to an average of 30.8 percent in the 1990s. Overall stream discharge shows no significant increase, suggesting that the glaciers are melting, and/or precipitation levels (or other hydrologic factors) are decreasing at about the same rate. If glaciers continue to recede, they may disappear permanently from the Cascades. If that occurs, their summer contribution to surface-water supplies will cease, and water-management policies will need drastic revision. [source] |