Carrier Fluid (carrier + fluid)

Distribution by Scientific Domains


Selected Abstracts


The effect of contact load reduction on the fatigue life of pearlitic rail steel in lubricated rolling,sliding contact

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 8 2000
D. I. Fletcher
Twin-disc contact simulation tests were carried out to investigate the influence of contact pressure variation on rail steel fatigue life. Both a colloidal suspension of molybdenum disulphide in an oil carrier fluid (similar to a commercial flange lubrication product) and water were used as lubricants. It was found that the reduction from 1500 to 900 MPa of the maximum Hertzian contact pressure (at which a molybdenum,disulphide-lubricated and previously worn rail sample was tested) extended the fatigue life of the rail steel by over five times. For water lubrication a similar reduction in contact pressure produced only a marginal increase in fatigue life. The results were found to be in qualitative agreement with the predictions of the newly developed Three Mechanism (TM) model of rolling contact fatigue, which is introduced here. This model combines the mechanisms of ratcheting and the fracture mechanics-based mechanisms of both shear stress- and tensile stress-driven, fluid-assisted, crack growth. [source]


Laminar diffusion of suspended particulate matter using a two phase flow model

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2002
T. C. Panda
Abstract The present paper envisages laminar mixing of a two-dimensional jet of particulate suspension in an incompressible carrier fluid with a free stream in direction of the jet axis. Finite difference technique has been employed for finding out solution of governing equations. It is found that the diffusion parameter ,, the ratio of particle diffusion coefficient and kinematic viscosity of the carrier fluid, have significant influence on the concentration of particles. A large value of , has the effect in increasing the perturbation velocity up and perturbation density ,p. It is observed that the volume fraction ,, has no significant effect on perturbation velocity u and up but has profound effect on perturbation velocity v and vp. It is also found that the particle phase as well as the carrier fluid velocity attain free stream value for the large ,, the modified x -co-ordinate. Further the magnitude of the perturbation quantities u, up, v, vp decreases as , increases i.e. at far away from the nozzle exit. Copyright © 2002 John Wiley & Sons, Ltd. [source]


PRG4 exchange between the articular cartilage surface and synovial fluid

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2007
G.E. Nugent-Derfus
Abstract The boundary lubrication function of articular cartilage is mediated in part by proteoglycan 4 (PRG4) molecules, found both in synovial fluid (SF) and bound to the articular cartilage surface. Currently the mechanism by which PRG4 binds to the articular surface is not well understood. The objectives of this study were to determine (1) the effect of bathing fluid contents on PRG4 concentration at the articular surface ([PRG4]cart), and (2) whether native PRG4 can be removed from the surface and subsequently repleted with PRG4 from synovial fluid. In one experiment, cylindrical cartilage disks were stored in solutions of various PRG4 concentrations, either in phosphate-buffered saline (PBS) or SF as the carrier fluid. In a separate experiment, cartilage disks were stored in solutions expected to remove native PRG4 from the articular surface and allow subsequent repletion with PRG4 from SF. [PRG4]cart was independent of PRG4 concentration of the bathing fluid, and was similar for both carrier fluids. PRG4 was removed from cartilage by treatment with hyaluronidase, reduction/alkylation, and sodium dodecyl sulphate, and was repleted fully by subsequent bathing in SF. These results suggest that the articular surface is normally saturated with tightly bound PRG4, but this PRG4 can exchange with the PRG4 in SF under certain conditions. This finding suggests that all tissues surrounding the joint cavity that secrete PRG4 into the SF may help to maintain lubrication function at the articular surface. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1269,1276, 2007 [source]


Production of Highly Loaded Nanocomposites by Dispersing Nanoparticles in Epoxy Resin

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 9 2010
H. Nolte
Abstract The objective of this study was the investigation of techniques for dispersing alumina nanoparticles with different surface modifications in epoxy resin. In order to prepare the matrix suspension, high contents of fillers (up to 50,wt,%) were dispersed by conducting shear mixing techniques in a high performance laboratory kneader. The intention was to attain solutions that were stable against re-agglomeration, while the mass fraction and the product fineness were maintained as high as possible. Therefore, both the formulations and the dispersion parameters were varied systematically. An epoxy resin was used as a carrier fluid and a corresponding amine hardener system was chosen. Tests were performed using alumina particles and surface modified alumina particles at different particle concentrations. Furthermore, the effect of diluting the colloidal suspensions and the resulting long term stability were also examined. The matrix suspension was examined with respect to viscosity, stability and particle size distribution. [source]


RHEOLOGICAL CHARACTERIZATION OF CARBOXYMETHYLCELLULOSE SOLUTION UNDER ASEPTIC PROCESSING CONDITIONS

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 1 2002
ANDRIANA E. VAIS
ABSTRACT The rheology of Carboxymethylcellulose (CMC) solutions, which are widely used as carrier fluids in aseptic processing simulations, was studied. Effects such as time dependency, recovery, and viscoelasticity were studied. A model was developed to determine the apparent viscosity of CMC solutions as a function of shear rate, temperature, and concentration. The model can be used in process design from both a fluid mechanics standpoint and a heat transfer standpoint. It was found that the solutions behaved as pseudoplastic fluids that were irreversibly thixotropic and also viscoelastic. [source]


PRG4 exchange between the articular cartilage surface and synovial fluid

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2007
G.E. Nugent-Derfus
Abstract The boundary lubrication function of articular cartilage is mediated in part by proteoglycan 4 (PRG4) molecules, found both in synovial fluid (SF) and bound to the articular cartilage surface. Currently the mechanism by which PRG4 binds to the articular surface is not well understood. The objectives of this study were to determine (1) the effect of bathing fluid contents on PRG4 concentration at the articular surface ([PRG4]cart), and (2) whether native PRG4 can be removed from the surface and subsequently repleted with PRG4 from synovial fluid. In one experiment, cylindrical cartilage disks were stored in solutions of various PRG4 concentrations, either in phosphate-buffered saline (PBS) or SF as the carrier fluid. In a separate experiment, cartilage disks were stored in solutions expected to remove native PRG4 from the articular surface and allow subsequent repletion with PRG4 from SF. [PRG4]cart was independent of PRG4 concentration of the bathing fluid, and was similar for both carrier fluids. PRG4 was removed from cartilage by treatment with hyaluronidase, reduction/alkylation, and sodium dodecyl sulphate, and was repleted fully by subsequent bathing in SF. These results suggest that the articular surface is normally saturated with tightly bound PRG4, but this PRG4 can exchange with the PRG4 in SF under certain conditions. This finding suggests that all tissues surrounding the joint cavity that secrete PRG4 into the SF may help to maintain lubrication function at the articular surface. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1269,1276, 2007 [source]


Perfluorocarbons: Life sciences and biomedical uses Dedicated to the memory of Professor Guy Ourisson, a true RENAISSANCE man.

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2007
Marie Pierre Krafft
Abstract Perfluorocarbons are primarily characterized by outstanding chemical and biological inertness, and intense hydrophobic and lipophobic effects. The latter effects provide a powerful noncovalent, labile binding interaction that can promote selective self- assembly. Perfluoro compounds do not mimic nature, yet they can offer abiotic building blocks for the de novo design of functional biopolymers and alternative solutions to physiologically vital issues. They offer new tags useful for molecular recognition, selective sorting, and templated binding (e.g., selective peptide and nucleic acid pairing). They also stabilize membranes and provide micro- and nanocompartmented fluorous environments. Perfluorocarbons provide inert, apolar carrier fluids for lab-on-a-chip experiments and assays using microfluidic technologies. Low water solubility, combined with high vapor pressure, allows stabilization of injectable microbubbles that serve as contrast agents for diagnostic ultrasound imaging. High gas solubilities are the basis for an abiotic means for intravascular oxygen delivery. Other biomedical applications of fluorocarbons include lung surfactant replacement and ophthalmologic aids. Diverse colloids with fluorocarbon phases and/or shells are being investigated for molecular imaging using ultrasound or magnetic resonance, and for targeted drug delivery. Highly fluorinated polymers provide a range of inert materials (e.g., fluorosilicons, expanded polytetrafluoroethylene) for contact lenses, reconstructive surgery (e.g., vascular grafts), and other devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1185,1198, 2007. [source]