Absorption Data (absorption + data)

Distribution by Scientific Domains


Selected Abstracts


Effect of temperature and isomorphic atom substitution on optical absorption edge of TlInS2xSe2(1-x) mixed crystals (0.25 , x , 1)

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 5 2010
N. M. Gasanly
Abstract The optical properties of the TlInS2xSe2(1-x)mixed crystals (0.25 , x , 1) have been investigated through the transmission and reflection measurements in the wavelength range of 400,1100 nm. The optical indirect band gap energies were determined by means of the analysis of the absorption data. It was found that the energy band gaps decrease with the increase of selenium atoms content in the TlInS2xSe2(1-x)mixed crystals. The transmission measurements carried out in the temperature range of 10,300 K revealed that the rates of change of the indirect band gaps with temperature are , = ,9.2×10,4 eV/K, ,6.1×10,4 eV/K, ,4.7×10,4 eV/K and ,5.6×10,4 eV/K for TlInS2, TlInS1.5Se0.5, TlInSSe and TlInS0.5Se1.5 crystals, respectively. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Temperature-tuned band gap energy and oscillator parameters of Tl2InGaSe4 semiconducting layered single crystals

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 3 2009
N. M. Gasanly
Abstract The optical properties of Tl2InGaSe4 layered single crystals have been studied through the transmission and reflection measurements in the wavelength range of 500-1100 nm. The analysis of room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.86 and 2.05 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed that the rate of change of the indirect band gap with temperature is , = , 4.4 × 10 -4 eV/K. The absolute zero value of the band gap energy was obtained as Egi(0) = 1.95 eV. The dispersion of the refractive index is discussed in terms of the single oscillator model. The refractive index dispersion parameters: oscillator wavelength and strength were found to be 2.53 × 10,7 m and 9.64 × 1013 m,2, respectively. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


In situ kinetic modelling of intestinal efflux in rats: functional characterization of segmental differences and correlation with in vitro results

BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 5 2007
Isabel González-Alvarez
Abstract The objective was to devise and apply a novel modelling approach to combine segmental in situ rat perfusion data and in vitro cell culture data, in order to elucidate the contribution of efflux in drug absorption kinetics. The fluoroquinolone CNV97100 was used as a model P-gp substrate. In situ intestinal perfusion was performed in rat duodenum, jejunum, ileum and colon to measure the influence of P-gp expression on efflux. Inhibition studies of CNV97100 were performed in the presence of verapamil, quinidine, cyclosporin A and p -aminohippuric acid. Absorption/efflux parameters were modelled simultaneously, using data from both in situ studies as well as in vitro studies. The maximal efflux velocity was modelled as a baseline value, corrected for each segment based on the expression level. CNV97100 passive diffusional permeability (Pdiff) and its affinity for the efflux carrier (Km) were assumed to be the same in all segments. The results indicate the new approach to combine in situ data and in vitro data succeed in yielding a unified, quantitative model for absorption/efflux. The model incorporated a quantitative relationship between P-gp expression level and the efflux functionality, both across in situ and in vitro systems, as well across different intestinal segments in the in situ studies. Permeability values decreased from duodenum to ileum in accordance with the increasing P-gp expression levels in rat intestine. The developed model reflects a strong correlation between in vitro and in situ results, including intrinsic differences in surface area. The successful application of a model approach to combine absorption data from two different experimental systems holds promise for future efforts to predict absorption results from one system to a second system. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Titration of poly(dA-dT) · poly(dA-dT) in solution at variable NaCl concentration

BIOPOLYMERS, Issue 2 2004
Marta Airoldi
Abstract CD and uv absorption data showed that high molecular weight poly(dA-dT) · poly(dA-dT), at 298 K, undergoes an acid-induced transition from B-double helix to random coil in NaCl solutions of different concentrations, ranging from 0.005 to 0.600M. Similarly, titration of the polynucleotide with a strong base causes duplex-to-single strands transition. The base- and acid-induced transitions were both reversible by back-titration (with an acid or, respectively, with a base): the apparent pKa were the same in both directions. However, the number of protons per titratable site (adenine N1) required to reach half-denaturation was in great excess over the stoichiometric value; to a much larger extent, the same effect was observed also for the deprotonation of the N3H sites of thymine. Moreover, in the basic denaturation experiments, at low salt concentrations ([NaCl],0.300M) less acid than calculated was needed to back-titrate the base excess to half-denaturation. Both effects could be qualitatively justified on the basis of the counterion condensation theory of polyelectrolytes and considering the energy barrier created by the negatively charged phosphodiester groups to the penetration of the OH, ions inside the double helix and the screening effect of the Na+ ions on such charges, in the deprotonation experiments. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source]


Tuning of Electronic Properties of Single-Walled Carbon Nanotubes under Homogenous Conditions

CHEMPHYSCHEM, Issue 6 2009
Yutaka Maeda Prof.
Abstract Reversible and non-bonding interaction between SWNTs and ODCB is observed from the analyses of visible near-infrared absorption data and Raman spectroscopies (see spectra). The solvent effect on SWNTs effectively controls the electronic structure of SWNTs under homogeneous conditions. The dispersion of single-walled carbon nanotubes (SWNTs) in o -dichlorobenzene (ODCB) is studied. Reversible and non-bonding interaction between SWNTs and ODCB is observed from the analyses of visible near-infrared (Vis-NIR) absorption data and Raman spectroscopy. This interaction should be one of the important factors for stable dispersion of SWNTs in ODCB. The solvent effect on SWNTs effectively controls the electronic structure of SWNTs under homogeneous conditions. [source]