Cardiac Contractility (cardiac + contractility)

Distribution by Scientific Domains


Selected Abstracts


Acute Cardiac Effects of Nicotine in Healthy Young Adults

ECHOCARDIOGRAPHY, Issue 6 2002
Catherine D. Jolma M.D.
Background: Nicotine is known to have many physiologic effects. The influence of nicotine delivered in chewing gum upon cardiac hemodynamics and conduction has not been well-characterized. Methods: We studied the effects of nicotine in nonsmoking adults (6 male, 5 female; ages 23,36 years) using a double-blind, randomized, cross-over study. Subjects chewed nicotine gum (4 mg) or placebo. After 20 minutes (approximate time to peak nicotine levels), echocardiograms and signal-averaged electrocardiograms (SAECG) were obtained. After 40 minutes, subjects were again given nicotine gum or placebo in cross-over fashion. Standard echocardiographic measurements were made from two-dimensional images. We then calculated end-systolic wall stress (ESWS), shortening fraction (SF), systemic vascular resistance (SVR), velocity for circumferential fiber shortening corrected for heart rate (Vcfc), stroke volume, and cardiac output. P wave and QRS duration were measured from SAECG. Results: Significant differences (P < 0.05) from control or placebo were found for ESWS, mean blood pressure, cardiac output, SVR, heart rate, and P wave duration. No significant changes were seen in left ventricular ejection time (LVET), LV dimensions, SF, contractility (Vcfc), or QRS duration. Conclusions: These results suggest that nicotine chewing gum increases afterload and cardiac output. Cardiac contractility does not change acutely in response to nicotine gum. Heart rate and P wave duration are increased by chewing nicotine gum. [source]


Promigratory Activity of Oxytocin on Umbilical Cord Blood-Derived Mesenchymal Stem Cells

ARTIFICIAL ORGANS, Issue 6 2010
Yong Sook Kim
Abstract Recent studies show that oxytocin has various effects on cellular behaviors. Oxytocin is reported to stimulate cardiomyogenesis of embryonic stem cells and endothelial cell proliferation. Mesenchymal stem cells (MSCs) are widely used for cardiac repair, and we elucidated the effect of oxytocin on umbilical cord derived-MSCs (UCB-MSCs). UCB-MSCs were pretreated with oxytocin (100 nM) and washed with saline prior to experiments. To evaluate their angiogenic potential and migration activity, tube formation assay and Boyden chamber assay were performed. For in vivo study, ischemia-reperfusion was induced in rats, and UCB-MSCs with or without oxytocin pretreatment were injected into the infarcted myocardium to evaluate the engraftment of injected cells. Histological and hemodynamic studies were performed. Oxytocin-treated UCB-MSCs showed a decrease in tube formation but a drastic increase in transwell migration activity. The transcription level of matrix metalloproteinase (MMP)-2 was increased in oxytocin-treated UCB-MSCs. Knock-down of MMP-2 by use of siRNA restored the tube formation, while reducing transmigration activity. In rats injected with oxytocin-treated UCB-MSCs, cardiac fibrosis and CD68 infiltration in the peri-infarct zone were reduced, whereas cell engraftment and connexin43 expression were greater than in rats injected with untreated UCB-MSCs. By contrast, angiogenesis did not differ significantly between the two groups. Cardiac contractility was higher in the group injected with oxytocin-treated UCB-MSCs than in the group injected with phosphate-buffered saline alone. Collectively, oxytocin is an effective priming reagent for stem cells for application to damaged heart tissue. [source]


Cardiovascular function in the heat-stressed human

ACTA PHYSIOLOGICA, Issue 4 2010
C. G. Crandall
Abstract Heat stress, whether passive (i.e. exposure to elevated environmental temperatures) or via exercise, results in pronounced cardiovascular adjustments that are necessary for adequate temperature regulation as well as perfusion of the exercising muscle, heart and brain. The available data suggest that generally during passive heat stress baroreflex control of heart rate and sympathetic nerve activity are unchanged, while baroreflex control of systemic vascular resistance may be impaired perhaps due to attenuated vasoconstrictor responsiveness of the cutaneous circulation. Heat stress improves left ventricular systolic function, evidenced by increased cardiac contractility, thereby maintaining stroke volume despite large reductions in ventricular filling pressures. Heat stress-induced reductions in cerebral perfusion likely contribute to the recognized effect of this thermal condition in reducing orthostatic tolerance, although the mechanism(s) by which this occurs is not completely understood. The combination of intense whole-body exercise and environmental heat stress or dehydration-induced hyperthermia results in significant cardiovascular strain prior to exhaustion, which is characterized by reductions in cardiac output, stroke volume, arterial pressure and blood flow to the brain, skin and exercising muscle. These alterations in cardiovascular function and regulation late in heat stress/dehydration exercise might involve the interplay of both local and central reflexes, the contribution of which is presently unresolved. [source]


Somatic and visceral afferents to the ,vasodepressor region' of the caudal midline medulla in the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2003
Jason R. Potas
Abstract Previous research has found that the integrity of a restricted region of the caudal midline medulla (including caudal portions of nucleus raphé obscurus and nucleus raphé pallidus) was critical for vasodepression (hypotension, bradycardia, decreased cardiac contractility) evoked either by haemorrhage or deep pain. In this anatomical tracing study we found that the vasodepressor part of the caudal midline medulla (CMM) receives inputs arising from spinal cord, spinal trigeminal nucleus (SpV) and nucleus of the solitary tract (NTS). Specifically: (i) a spinal,CMM projection arises from neurons of the deep dorsal horn, medial ventral horn and lamina X at all spinal segmental levels, with approximately 60% of the projection originating from the upper cervical spinal cord (C1,C4); (ii) a SpV,CMM projection arises primarily from neurons at the transition between subnucleus caudalis and subnucleus interpolaris; (iii) a NTS,CMM projection arises primarily from neurons in ventrolateral and medial subnuclei. In combination, the specific spinal, SpV and NTS regions which project to the CMM receive the complete range of somatic and visceral afferents known to trigger vasodepression. The role(s) of each specific projection is discussed. [source]


Sigma receptors: from discovery to highlights of their implications in the cardiovascular system

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 1 2002
Laurent Monassier
Sigma receptors are the targets of many ligands, of which some (the haloperidol for instance) are psychoactive, and of substances known to have antiarrhythmic effects (amiodarone and clofilium). They are involved in a variety of cardiovascular functions, such as the regulation of cardiac contractility and rhythm and the regulation of coronary and peripheral arterial vasomotricity. This short review will focus on some aspects regarding the ligands, the binding sites, the intracellular coupling and the cardiovascular functions of these enigmatic receptors. [source]


An abnormal gene expression of the ,-adrenergic system contributes to the pathogenesis of cardiomyopathy in cirrhotic rats,

HEPATOLOGY, Issue 6 2008
Giulio Ceolotto
Decreased cardiac contractility and ,-adrenergic responsiveness have been observed in cirrhotic cardiomyopathy, but their molecular mechanisms remain unclear. To study ,-adrenergic,stimulated contractility and ,-adrenergic gene expression patterns, 20 Wistar Kyoto rats were treated with carbon tetrachloride to induce cirrhosis and 20 rats were used as controls. Left ventricular contractility was recorded in electrically driven isolated hearts perfused at constant flow with isoproterenol (10,10 to 10,6 M). A cardiac gene expression profile was obtained using a microarray for the myocyte adrenergic pathway. The cardiac contractility maximal response to isoproterenol was significantly reduced in cirrhotic rats in comparison to control rats, whereas the half-maximal effective concentration was not different. In cirrhotic rats, cardiac gene expression analysis showed a significant overexpression of G protein alpha,inhibiting subunit 2 (G,i2), cyclic nucleotide phosphodiesterase (PDE2a), regulator of G-protein signaling 2 (RGS2), and down-expression of adenylate cyclase (Adcy3). These results indicate that overexpression of G,i2, PDE2a, and RGS2 down-regulates the ,-adrenergic signaling pathway, thus contributing to the pathogenesis of cirrhotic cardiomyopathy. (HEPATOLOGY 2008;48:1913-1923.) [source]


Modulation of cardiac ionic homeostasis by 3-iodothyronamine

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Sandra Ghelardoni
Abstract 3-iodothyronamine (T1AM) is a novel endogenous relative of thyroid hormone, able to interact with trace amine-associated receptors, a class of plasma membrane G protein-coupled receptors, and to produce a negative inotropic and chronotropic effect. In the isolated rat heart 20,25 ,M T1AM decreased cardiac contractility, but oxygen consumption and glucose uptake were either unchanged or disproportionately high when compared to mechanical work. In adult rat cardiomyocytes acute exposure to 20 ,M T1AM decreased the amplitude and duration of the calcium transient. In patch clamped cardiomyocytes sarcolemmal calcium current density was unchanged while current facilitation by membrane depolarization was abolished consistent with reduced sarcoplasmic reticulum (SR) calcium release. In addition, T1AM decreased transient outward current (Ito) and IK1 background current. SR studies involving 20 ,M T1AM revealed a significant decrease in ryanodine binding due to reduced Bmax, no significant change in the rate constant of calcium-induced calcium release, a significant increase in calcium leak measured under conditions promoting channel closure, and no effect on oxalate-supported calcium uptake. Based on these observations we conclude T1AM affects calcium and potassium homeostasis and suggest its negative inotropic action is due to a diminished pool of SR calcium as a result of increased diastolic leak through the ryanodine receptor, while increased action potential duration is accounted for by inhibition of Ito and IK1 currents. [source]


Increased intracellular [dATP] enhances cardiac contraction in embryonic chick cardiomyocytes

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008
Brenda Schoffstall
Abstract Although ATP is the physiological substrate for cardiac contraction, cardiac contractility is significantly enhanced in vitro when only 10% of ATP substrate is replaced with 2,-deoxy-ATP (dATP). To determine the functional effects of increased intracellular [dATP] ([dATP]i) within living cardiac cells, we used hypertonic loading with varying exogenous dATP/ATP ratios, but constant total nucleotide concentration, to elevate [dATP]i in contractile monolayers of embryonic chick cardiomyocytes. The increase in [dATP]i was estimated from dilution of dye added in parallel with dATP. Cell viability, average contractile amplitude, rates of contraction/relaxation, spontaneous beat frequency, and Ca2+ transient amplitude and kinetics were examined. At total [dATP]i above ,70 µM, spontaneous contractions ceased, and above ,100 µM [dATP]i, membrane blebbing was also observed, consistent with apoptosis. Interestingly, [dATP]i of ,60 µM (,40% increase over basal [dATP]i levels) enhanced both amplitude of contraction and the rates of contraction and relaxation without affecting beat frequency. With total [dATP]i of ,60 µM or less, we found no significant change in Ca2+ transients. These data indicate that there is an "optimal" concentration of exogenously loaded [dATP]i that under controlled conditions can enhance contractility in living cardiomyocytes without affecting beat frequency or Ca2+ transients. J. Cell. Biochem. 104: 2217,2227, 2008. © 2008 Wiley-Liss, Inc. [source]


Alcohol and Mitochondria in Cardiac Apoptosis: Mechanisms and Visualization

ALCOHOLISM, Issue 5 2005
György Hajnóczky
Apoptosis of myocytes is likely to contribute to a variety of heart conditions and could also be important in the development of alcoholic heart disease. A fundamental pathway to apoptosis is through mitochondrial membrane permeabilization and release of proapoptotic factors from the mitochondrial intermembrane space to the cytosol. The authors' results show that prolonged exposure of cultured cardiac cells to ethanol (35 mM for 48 hr) promotes Ca2+ -induced activation of the mitochondrial permeability transition pore (PTP). PTP-dependent mitochondrial membrane permeabilization is followed by release of cytochrome c and execution of apoptosis. The authors propose that chronic ethanol exposure, in combination with other stress signals, may allow for activation of the PTP by physiological calcium oscillations, providing a trigger for cardiac apoptosis during chronic alcohol abuse. Coincidence of apoptosis promoting factors occurs in only a small fraction of myocytes, but because of the absence of regeneration, even a modest increase in the rate of cell death may contribute to a decrease in cardiac contractility. Detection of apoptotic changes that are present in only a few myocytes at a certain time in the heart is not feasible with most of the apoptotic assays. Fluorescence imaging is a powerful technology to visualize changes that are confined to a minor fraction of cells in a tissue, and the use of multiphoton excitation permits imaging in situ deep in the wall of the intact heart. This article discusses potential mechanisms of the effect of alcohol on mitochondrial membrane permeabilization and visualization of mitochondria-dependent apoptosis in cardiac muscle. [source]


Levosimendan has an inhibitory effect on platelet function

AMERICAN JOURNAL OF HEMATOLOGY, Issue 1 2008
at Kaptan
Levosimendan enhances cardiac contractility by increasing myocyte sensitivity to calcium, and induces vasodilatation. Although studies have evaluated the efficacy of levosimendan in heart failure, it is not clear whether it might produce functional influence on platelet response. In this study, the effect of levosimendan on platelet aggregation was investigated. Platelet function tests were performed in 12 healthy male volunteers. Three concentrations of levosimendan solution were prepared that would result in 10, 25, and 45 ng/ml levosimendan concentrations in the blood similar to that observed after clinical therapeutic intravenous application of 0.05,0.1 ,g/kg/min. Each concentration of levosimendan solution and a control diluent without levosimendan were incubated with whole blood at 37°C. After incubation for 15 min, aggregation responses were evaluated with adenosine diphosphate (ADP) (5 and 10 ,M) and collagen (2 and 5 ,g/ml) in platelet-rich plasma. Preincubation with all dilutions of levosimendan inhibited aggregation of platelets induced by ADP and collagen significantly. Levosimendan also inhibited significantly the secondary wave of platelet aggregation induced by ADP. The results showed that there was a relationship between levosimendan concentration and inhibition of platelet aggregation. In conclusion, this study with an in vitro model showed that levosimendan had a significant inhibitory effect on platelets in clinically relevant doses. Am. J. Hematol., 2008. © 2007 Wiley-Liss, Inc. [source]


Different sensitivity of isoprenaline-induced responses in ventricular muscle to sodium nitroprusside in normotensive and spontaneously hypertensive rats 1

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 2 2000
A. M. Manso
1 The aim of the present work was to study the possible modulatory role of nitric oxide (NO) on the positive inotropic effect induced by the ,-adrenoceptor agonist isoprenaline in myocardial contractility, and whether this modulation is altered by hypertension. 2 The study was performed using right ventricular strips from the hearts of 6-month-old male Wistar,Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). The contractile force of electrically-stimulated ventricular strips was measured by a force-displacement transducer. 3 Isoprenaline (from 10 nmol l,1 to 10 ,mol l,1) induced a concentration-dependent increase in cardiac contractility in strips from both rat strains. This positive inotropic effect to isoprenaline was reduced by the NO donor sodium nitroprusside (SNP, 0.1 mmol l,1) in muscles from WKY rats and slightly increased in those from SHR. The SNP-induced increase in strips from SHR was abolished by superoxide dismutase (100 U ml,1). 4 NG-nitro-arginine-methyl ester (L-NAME, 0.1 mmol l,1) and 1H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one (ODQ, 10 ,mol l,1), respective inhibitors of NO synthase and guanylate cyclase, increased the response to isoprenaline in muscles from WKY rats, whereas it was unaltered in strips from SHR. 5 In strips from WKY rats, the combination of ODQ and SNP produced an increase in the response elicited by isoprenaline, which was similar to that observed with ODQ or L-NAME. 8-Br-cyclicGMP (8-Br-cGMP, 0.1 mmol l,1), a permeable and structural cGMP analogue, decreased the effect induced by isoprenaline only in muscles from WKY rats. 6 These results suggest that the positive inotropic response to isoprenaline in ventricular strips from WKY rats is negatively modulated by NO, and positively by superoxide anions in those from SHR. The lack of a modulatory response to NO in ventricular strips from SHR is probably a result of an alteration of mechanisms in NO-signalling pathway downstream of cGMP formation in SHR hearts. [source]


Trace amine-associated receptors and their ligands

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2006
R Zucchi
Classical biogenic amines (adrenaline, noradrenaline, dopamine, serotonin and histamine) interact with specific families of G protein-coupled receptors (GPCRs). The term ,trace amines' is used when referring to p- tyramine, ,-phenylethylamine, tryptamine and octopamine, compounds that are present in mammalian tissues at very low (nanomolar) concentrations. The pharmacological effects of trace amines are usually attributed to their interference with the aminergic pathways, but in 2001 a new gene was identified, that codes for a GPCR responding to p- tyramine and ,-phenylethylamine but not to classical biogenic amines. Several closely related genes were subsequently identified and designated as the trace amine-associated receptors (TAARs). Pharmacological investigations in vitro show that many TAAR subtypes may not respond to p- tyramine, ,-phenylethylamine, tryptamine or octopamine, suggesting the existence of additional endogenous ligands. A novel endogenous thyroid hormone derivative, 3-iodothyronamine, has been found to interact with TAAR1 and possibly other TAAR subtypes. In vivo, micromolar concentrations of 3-iodothyronamine determine functional effects which are opposite to those produced on a longer time scale by thyroid hormones, including reduction in body temperature and decrease in cardiac contractility. Expression of all TAAR subtypes except TAAR1 has been reported in mouse olfactory epithelium, and several volatile amines were shown to interact with specific TAAR subtypes. In addition, there is evidence that TAAR1 is targeted by amphetamines and other psychotropic agents, while genetic linkage studies show a significant association between the TAAR gene family locus and susceptibility to schizophrenia or bipolar affective disorder. British Journal of Pharmacology (2006) 149, 967,978. doi:10.1038/sj.bjp.0706948 [source]


Operative contractility: A functional concept of the inotropic state

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2005
Roberto Curiel
SUMMARY 1.,Initial unsuccessful attempts to evaluate ventricular function in terms of the ,heart as a pump' led to focusing on the ,heart as a muscle' and to the concept of myocardial contractility. However, no clinically ideal index exists to assess the contractile state. The aim of the present study was to develop a mathematical model to assess cardiac contractility. 2.,A tri-axial system was conceived for preload (PL), afterload (AL) and contractility, where stroke volume (SV) was represented as the volume of the tetrahedron. Based on this model, ,operative' contractility (,OperCon') was calculated from the readily measured values of PL, AL and SV. The model was tested retrospectively under a variety of different experimental and clinical conditions, in 71 studies in humans and 29 studies in dogs. A prospective echocardiographic study was performed in 143 consecutive subjects to evaluate the ability of the model to assess contractility when SV and PL were measured volumetrically (mL) or dimensionally (cm). 3.,With inotropic interventions, OperCon changes were comparable to those of ejection fraction (EF), velocity of shortening (Vcf) and dP/dt-max. Only with positive inotropic interventions did elastance (Ees) show significantly larger changes. With load manipulations, OperCon showed significantly smaller changes than EF and Ees and comparable changes to Vcf and dP/dt-max. Values of OperCon were similar when AL was represented by systolic blood pressure or wall stress and when volumetric or dimensional values were used. 4.,Operative contractility is a reliable, simple and versatile method to assess cardiac contractility. [source]