Cartilage Integrity (cartilage + integrity)

Distribution by Scientific Domains


Selected Abstracts


Functional consequences of cartilage degeneration in the equine metacarpophalangeal joint: quantitative assessment of cartilage stiffness

EQUINE VETERINARY JOURNAL, Issue 5 2005
H. BROMMER
Summary Reasons for performing study: No quantitative data currently exist on the relationship of the occurrence of cartilage degeneration and changes in site-specific biomechanical properties in the metacarpophalangeal (MCP) joint in the horse. Objectives: To gain insight into the biomechanical consequences of cartilage deterioration at 2 differently loaded sites on the proximal articular surface of the proximal phalanx (P1). Hypothesis: Static and dynamic stiffness of articular cartilage decreases significantly in degenerated cartilage. Methods: Cartilage degeneration index (CDI) values were measured at the lateral dorsal margin (Site 1), lateral central fovea (Site 2) and entire joint surface of P1 (CDIP1) in 30 horses. Group 1 contained joints without (CDIP1 values <25%, n = 22) and Group 2 joints with (CDIP1 values >25%, n = 8) signs of cartilage degeneration. Cartilage thickness at Sites 1 and 2 was measured using ultrasonic and needle-probe techniques. Osteochondral plugs were drilled out from Sites 1 and 2 and subsequently tested biomechanically in indentation geometry. Young's modulus at equilibrium and dynamic modulus were determined. Results: Cartilage thickness values were not significantly different between the 2 groups and sites. Young's modulus at Site 1 was significantly higher in Group 1 than in Group 2; at Site 2, the difference was not significant. Dynamic modulus values were significantly higher in Group 1 than in Group 2 at both sites. Conclusions: Degenerative cartilage changes are clearly related to loss of stiffness of the tissue. Absolute changes in cartilage integrity in terms of CDI are greatest at the joint margin, but concomitant changes are also present at the centre, with a comparable decrease of the biomechanical moduli at the 2 sites. Therefore, significant cartilage degradation at the joint margin not only reflects local deterioration of biomechanical properties, but is also indicative of the functional quality in the centre. Potential relevance: These findings may be important for improving prognostication and developing preventative measures. [source]


Lack of oxygen in articular cartilage: consequences for chondrocyte biology

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 2 2010
Jérôme E. Lafont
Summary Controlling the chondrocytes phenotype remains a major issue for cartilage repair strategies. These cells are crucial for the biomechanical properties and cartilage integrity because they are responsible of the secretion of a specific matrix. But chondrocyte dedifferentiation is frequently observed in cartilage pathology as well as in tissue culture, making their study more difficult. Given that normal articular cartilage is hypoxic, chondrocytes have a specific and adapted response to low oxygen environment. While huge progress has been performed on deciphering intracellular hypoxia signalling the last few years, nothing was known about the particular case of the chondrocyte biology in response to hypoxia. Recent findings in this growing field showed crucial influence of the hypoxia signalling on chondrocytes physiology and raised new potential targets to repair cartilage and maintain tissue integrity. This review will thus focus on describing hypoxia-mediated chondrocyte function in the native articular cartilage. [source]


A sodium dodecyl sulfate,polyacrylamide gel electrophoresis,liquid chromatography tandem mass spectrometry analysis of bovine cartilage tissue response to mechanical compression injury and the inflammatory cytokines tumor necrosis factor , and interleukin-1,

ARTHRITIS & RHEUMATISM, Issue 2 2008
Anna L. Stevens
Objective To compare the response of chondrocytes and cartilage matrix to injurious mechanical compression and treatment with interleukin-1, (IL-1,) and tumor necrosis factor , (TNF,), by characterizing proteins lost to the medium from cartilage explant culture. Methods Cartilage explants from young bovine stifle joints were treated with 10 ng/ml of IL-1, or 100 ng/ml of TNF, or were subjected to uniaxial, radially-unconfined injurious compression (50% strain; 100%/second strain rate) and were then cultured for 5 days. Pooled media were subjected to gel-based separation (sodium dodecyl sulfate,polyacrylamide gel electrophoresis) and analysis by liquid chromatography tandem mass spectrometry, and the data were analyzed by Spectrum Mill proteomics software, focusing on protein identification, expression levels, and matrix protein proteolysis. Results More than 250 proteins were detected, including extracellular matrix (ECM) structural proteins, pericellular matrix proteins important in cell,cell interactions, and novel cartilage proteins CD109, platelet-derived growth factor receptor,like, angiopoietin-like 7, and adipocyte enhancer binding protein 1. IL-1, and TNF, caused increased release of chitinase 3,like protein 1 (CHI3L1), CHI3L2, complement factor B, matrix metalloproteinase 3, ECM-1, haptoglobin, serum amyloid A3, and clusterin. Injurious compression caused the release of intracellular proteins, including Grp58, Grp78, ,4-actinin, pyruvate kinase, and vimentin. Injurious compression also caused increased release and evidence of proteolysis of type VI collagen subunits, cartilage oligomeric matrix protein, and fibronectin. Conclusion Overload compression injury caused a loss of cartilage integrity, including matrix damage and cell membrane disruption, which likely occurred through strain-induced mechanical disruption of cells and matrix. IL-1, and TNF, caused the release of proteins associated with an innate immune and stress response by the chondrocytes, which may play a role in host defense against pathogens or may protect cells against stress-induced damage. [source]


A radiologic and histologic study of the os peroneum: Prevalence, morphology, and relationship to degenerative joint disease of the foot and ankle in a cadaveric sample

CLINICAL ANATOMY, Issue 6 2009
C. Muehleman
Abstract The present study investigated the prevalence of an os peroneum (OP, a sesamoid bone) in a cadaveric sample and its relationship to the shape of the cuboid tuberosity, and cartilage degeneration at the cuboid tuberosity and in regional joints within the foot (first metatarsophalangeal and calcaneocuboid) and ankle. The fibularis longus tendon of 33 embalmed human cadavers (mean age 81 years) were obtained from the anatomy laboratory. Nineteen of 64 tendons (30%) displayed an OP both radiographically and histologically. The os peronei ranged in size from small spicules to prominent masses: mean area 2.48 mm2 (left) and 2.70 mm2 (right). Histologically, the os peronei were cancellous bone, the largest occupying most of the tendon at the point of contact with the cuboid tuberosity. Fibrocartilage was present at their borders, merging with dense regular fibrous tissue and peritenon. The talocrural, calcaneocuboid, and first metatarsophalangeal joints were examined for cartilage integrity and osteophytes based on an earlier suggestion that there may be an association between degenerative joint disease and endochondral bone formation. There was no statistical correlation between presence of an OP with any of the following parameters: age, gender, body size, cartilage degeneration, or osteophytes within any of the joints examined. Therefore, the presence of an OP does not appear to be associated with increased endochondral ossification or degenerative joint disease. This study does not preclude the possibility that sesamoid bone formation may be associated with biomechanical functions within the foot; thus, future studies may be warranted. Clin. Anat. 22:747,754, 2009. © 2009 Wiley-Liss, Inc. [source]