| |||
CART Neurons (cart + neuron)
Selected AbstractsEarly and transient ontogenetic expression of the cocaine- and amphetamine-regulated transcript peptide in the rat mesencephalon: Correlation with tyrosine hydroxylase expressionDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2002F. Brischoux Abstract The ontogeny of cocaine- and amphetamine-regulated transcript (CART) expression has been analyzed by immunohistochemistry in the mesencephalon of the rat central nervous system, and compared to the pattern of tyrosine hydroxylase- (TH-) expression. CART-producing neurons were first detected on the embryonic day 11 (E11) in the ventral mesencephalic vesicle. These neurons are among the first cells of the mantle layer to differentiate. From E13, a complementary pattern of distribution was observed, dividing the mantle layer into an external TH zone and an internal CART zone. Many TH-positive neurons were found to migrate from the neuroepithelium through the area containing the CART-immunoreactive neurons to settle more laterally. These TH cells exhibited prominent leading and trailing dendrites in the immediate vicinity of CART perikarya. On E16, the number of CART neurons appeared to diminish, and they were confined near the ventricle and around the fasciculus retroflexus. On E18 and E20, only the Edinger-Westphal nucleus exhibited a strong CART staining as described in the adult brain. Thus, the very early detection of CART during prenatal ontogeny led us to speculate that this peptide might have a role in the development of specific regions of the rat brain. In particular, our observations suggest that CART-expressing neurons might help the migration of the dopaminergic neurons of the substantia nigra. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 221,229, 2002 [source] Characterization of CART neurons in the rat and human hypothalamusTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2001Carol F. Elias Cocaine- and amphetamine-regulated transcript (CART) is a recently described neuropeptide widely expressed in the rat brain. CART mRNA and peptides are found in hypothalamic sites such as the paraventricular nucleus (PVH), the supraoptic nucleus (SON), the lateral hypothalamic area (LHA), the dorsomedial nucleus of the hypothalamus (DMH), the arcuate nucleus (Arc), the periventricular nucleus (Pe), and the ventral premammillary nucleus (PMV). Intracerebroventricular administration of recombinant CART peptide decreases food intake and CART mRNA levels in the Arc are regulated by leptin. Leptin administration induces Fos expression in hypothalamic CART neurons in the PVH, the DMH, the Arc, and the PMV. In the current study, we used double label in situ hybridization histochemistry to investigate the potential direct action of leptin on hypothalamic CART neurons and to define the chemical identity of the hypothalamic CART neurons in the rat brain. We found that CART neurons in the Arc, DMH, and PMV express long form leptin-receptor mRNA, and the suppressor of cytokine signaling-3 (SOCS-3) mRNA after an acute dose of intravenous leptin. We also found that CART neurons in the parvicellular PVH, in the DMH and in the posterior Pe coexpress thyrotropin-releasing hormone (TRH) mRNA. CART neurons in the magnocellular PVH and in the SON coexpress dynorphin (DYN), and CART cell bodies in the LHA and in the posterior Pe coexpress melanin-concentrating hormone (MCH) and glutamic acid decarboxylase (GAD-67) mRNA. In the Arc, a few CART neurons coexpress neurotensin (NT) mRNA. In addition, we examined the distribution of CART immunoreactivity in the human hypothalamus. We found CART cell bodies in the PVH, in the SON, in the LHA, in the Arc (infundibular nucleus) and in the DMH. We also observed CART fibers throughout the hypothalamus, in the bed nucleus of the stria terminalis, and in the amygdala. Our results indicate that leptin directly acts on CART neurons in distinct nuclei of the rat hypothalamus. Furthermore, hypothalamic CART neurons coexpress neuropeptides involved in energy homeostasis, including MCH, TRH, DYN, and NT. The distribution of CART cell bodies and fibers in the human hypothalamus indicates that CART may also play a role in the regulation of energy homeostasis in humans. J. Comp. Neurol. 432:1,19, 2001. © 2001 Wiley-Liss, Inc. [source] |