Carotid Sinus Nerve (carotid + sinus_nerve)

Distribution by Scientific Domains


Selected Abstracts


O2 -sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2000
Jean-Christophe Roux
Abstract Ventilatory responses to acute and long-term hypoxia are classically triggered by carotid chemoreceptors. The chemosensory inputs are carried within the carotid sinus nerve to the nucleus tractus solitarius and the brainstem respiratory centres. To investigate whether hypoxia acts directly on brainstem neurons or secondarily via carotid body inputs, we tested the ventilatory responses to acute and long-term hypoxia in rats with bilaterally transected carotid sinus nerves and in sham-operated rats. Because brainstem catecholaminergic neurons are part of the chemoreflex pathway, the ventilatory response to hypoxia was studied in association with the expression of tyrosine hydroxylase (TH). TH mRNA levels were assessed in the brainstem by in situ hybridization and hypoxic ventilatory responses were measured in vivo by plethysmography. After long-term hypoxia, TH mRNA levels in the nucleus tractus solitarius and ventrolateral medulla increased similarly in chemodenervated and sham-operated rats. Ventilatory acclimatization to hypoxia developed in chemodenervated rats, but to a lesser extent than in sham-operated rats. Ventilatory response to acute hypoxia, which was initially low in chemodenervated rats, was fully restored within 21 days in long-term hypoxic rats, as well as in normoxic animals which do not overexpress TH. Therefore, activation of brainstem catecholaminergic neurons and ventilatory adjustments to hypoxia occurred independently of carotid chemosensory inputs. O2 -sensing mechanisms unmasked by carotid chemodenervation triggered two ventilatory adjustments: (i) a partial acclimatization to long-term hypoxia associated with TH upregulation; (ii) a complete restoration of acute hypoxic responsivity independent of TH upregulation. [source]


Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors

JOURNAL OF NEUROCHEMISTRY, Issue 2 2006
S. V. Conde
Abstract Caffeine, an unspecific antagonist of adenosine receptors, is commonly used to treat the apnea of prematurity. We have defined the effects of caffeine on the carotid body (CB) chemoreceptors, the main peripheral controllers of breathing, and identified the adenosine receptors involved. Caffeine inhibited basal (IC50, 210 µm) and low intensity (PO2 , 66 mm Hg/30 mm K+) stimulation-induced release of catecholamines from chemoreceptor cells in intact preparations of rat CB in vitro. Opposite to caffeine, 5,-(N -ethylcarboxamido)adenosine (NECA; an A2 agonist) augmented basal and low-intensity hypoxia-induced release. 2- p -(2-Carboxyethyl)phenethyl-amino-5,- N -ethylcaboxamido-adenosine hydrochloride (CGS21680), 2-hexynyl-NECA (HE-NECA) and SCH58621 (A2A receptors agents) neither affected catecholamine release nor altered the caffeine effects. The 8-cycle-1,3-dipropylxanthine (DPCPX; an A1/A2B antagonist) and 8-(4-{[(4-cyanophenyl)carbamoylmethyl]-oxy}phenyl)-1,3-di(n-propyl)xanthine (MRS1754; an A2B antagonist) mimicking of caffeine indicated that caffeine effects are mediated by A2B receptors. Immunocytochemical A2B receptors were located in tyrosine hydroxylase positive chemoreceptor cells. Caffeine reduced by 52% the chemosensory discharges elicited by hypoxia in the carotid sinus nerve. Inhibition had two components with pharmacological analysis indicating that A2A and A2B receptors mediate, respectively, the low (17 × 10,9 m) and high (160 × 10,6 m) IC50 effects. It is concluded that endogenous adenosine, via presynaptic A2B and postsynaptic A2A receptors, can exert excitatory effects on the overall output of the rat CB chemoreceptors. [source]


Gene expression in peripheral arterial chemoreceptors

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002
Estelle B. Gauda
Abstract The peripheral arterial chemoreceptors of the carotid body participate in the ventilatory responses to hypoxia and hypercapnia, the arousal responses to asphyxial apnea, and the acclimatization to high altitude. In response to an excitatory stimuli, glomus cells in the carotid body depolarize, their intracellular calcium levels rise, and neurotransmitters are released from them. Neurotransmitters then bind to autoreceptors on glomus cells and postsynaptic receptors on chemoafferents of the carotid sinus nerve. Binding to inhibitory or excitatory receptors on chemoafferents control the electrical activity of the carotid sinus nerve, which provides the input to respiratory-related brainstem nuclei. We and others have used gene expression in the carotid body as a tool to determine what neurotransmitters mediate the response of peripheral arterial chemoreceptors to excitatory stimuli, specifically hypoxia. Data from physiological studies support the involvement of numerous putative neurotransmitters in hypoxic chemosensitivity. This article reviews how in situ hybridization histochemistry and other cellular localization techniques confirm, refute, or expand what is known about the role of dopamine, norepinephrine, substance P, acetylcholine, adenosine, and ATP in chemotransmission. In spite of some species differences, review of the available data support that 1) dopamine and norepinephrine are synthesized and released from glomus cells in all species and play an inhibitory role in hypoxic chemosensitivity; 2) substance P and acetylcholine are not synthesized in glomus cells of most species but may be made and released from nerve fibers innervating the carotid body in essentially all species; 3) adenosine and ATP are ubiquitous molecules that most likely play an excitatory role in hypoxic chemosensitivity. Microsc. Res. Tech. 59:153,167, 2002. © 2002 Wiley-Liss, Inc. [source]


O2 -sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2000
Jean-Christophe Roux
Abstract Ventilatory responses to acute and long-term hypoxia are classically triggered by carotid chemoreceptors. The chemosensory inputs are carried within the carotid sinus nerve to the nucleus tractus solitarius and the brainstem respiratory centres. To investigate whether hypoxia acts directly on brainstem neurons or secondarily via carotid body inputs, we tested the ventilatory responses to acute and long-term hypoxia in rats with bilaterally transected carotid sinus nerves and in sham-operated rats. Because brainstem catecholaminergic neurons are part of the chemoreflex pathway, the ventilatory response to hypoxia was studied in association with the expression of tyrosine hydroxylase (TH). TH mRNA levels were assessed in the brainstem by in situ hybridization and hypoxic ventilatory responses were measured in vivo by plethysmography. After long-term hypoxia, TH mRNA levels in the nucleus tractus solitarius and ventrolateral medulla increased similarly in chemodenervated and sham-operated rats. Ventilatory acclimatization to hypoxia developed in chemodenervated rats, but to a lesser extent than in sham-operated rats. Ventilatory response to acute hypoxia, which was initially low in chemodenervated rats, was fully restored within 21 days in long-term hypoxic rats, as well as in normoxic animals which do not overexpress TH. Therefore, activation of brainstem catecholaminergic neurons and ventilatory adjustments to hypoxia occurred independently of carotid chemosensory inputs. O2 -sensing mechanisms unmasked by carotid chemodenervation triggered two ventilatory adjustments: (i) a partial acclimatization to long-term hypoxia associated with TH upregulation; (ii) a complete restoration of acute hypoxic responsivity independent of TH upregulation. [source]