| |||
Carbonated Hydroxyapatite (carbonated + hydroxyapatite)
Selected AbstractsDeposition of Carbonated Hydroxyapatite (CO3HAp) on Poly(Methylmethacrylate) Surfaces by Decomposition of Calcium,EDTA ChelateJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2008Yusuf Yusufoglu Inspired from the nature, the development of organic,inorganic composites between polymers and hydroxyapatite (HAp) has been investigated extensively. In this study, bone-like apatite (carbonated hydroxyapatite, CO3HAp) was precipitated on poly(methylmethacrylate) (PMMA) films by the oxidative decomposition of Ca,EDTA (calcium,ethylenediamine tetraacetate) chelates. Corona-treated PMMA films were soaked in a Ca,EDTA,PO4,H2O2 solution and aged at 63°C and pH,9 for times ranging from 1 to 24 h. Apatite formed on PMMA films was characterized by X-ray diffraction, Fourier transform infrared (FTIR), Scanning electron microscope, energy-dipersive X-ray spectroscopy, and carbon analysis. The apatite was found to be CO3HAp with Ca/P atomic ratio ranging between 1.3 and 1.9. Elemental analyses indicated that the carbonate content of the apatite phase was around 6.5 wt% after 24 h of aging time. Lattice parameters were estimated using a Rietveld profile-analysis and found to be a=0.9438 nm and c=0.6901 nm. Furthermore, FTIR spectra indicated that the apatite deposited on PMMA was B-type CO3HAp, in which carbonate ions occupy the phosphate sites. In the first 3 h of aging, isolated rod-like HAp particles were observed. With time, the needle-like crystallites radiate from a nucleus to form double-spherulite shape particles. The crystallites grew into a continuous layer with a thickness of ,15 ,m after 24-h aging. The adhesive strength between the PMMA substrate and the apatite layer was determined to be around 1.7 MPa. [source] Development, characterization, and validation of porous carbonated hydroxyapatite bone cementJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2009Pei-Fu Tang Abstract Carbonated hydroxyapatite (CHA) bone cement is capable of self-setting and forming structures similar to mineralized bone. Conventional CHA leaves little room for new bone formation and delays remodeling. The purposes of this study were to develop porous CHA (PCHA) bone cement and to investigate its physicochemical properties, biocompatibility, biodegradation, and in vivo bone repair potential. Vesicants were added to modify CHA, and the solidification time, porosity, and pore size of the PCHA cements were examined. The cytotoxicity and bone repair potential of PCHA were tested in a rabbit bone defect model and assessed by x-ray, histological examination, and mechanical testing. The porosity of the modified PCHA was 36%; 90.23% of the pores were greater than 70 ,m, with a calcium/phosphate ratio of 1.64 and a solidification time of 15 minutes. The PCHA did not affect bone cell growth in vitro, and the degrading time of the PCHA was two and four times faster in vitro and in vivo when compared to CHA. In the bone defect model, the amount of new bone formation in the PCHA-treated group was eight times greater than that of the CHA group; the compressive strength of the PCHA setting was relatively weak in the first weeks but increased significantly at 8 to 16 weeks compared to the CHA group. The PCHA has stable physicochemical properties and excellent biocompatibility; it degrades faster than CHA, provides more porous spaces for new bone ingrowths, and may be a new form of bone cement for the management of bone defects. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2009 [source] Deposition of Carbonated Hydroxyapatite (CO3HAp) on Poly(Methylmethacrylate) Surfaces by Decomposition of Calcium,EDTA ChelateJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2008Yusuf Yusufoglu Inspired from the nature, the development of organic,inorganic composites between polymers and hydroxyapatite (HAp) has been investigated extensively. In this study, bone-like apatite (carbonated hydroxyapatite, CO3HAp) was precipitated on poly(methylmethacrylate) (PMMA) films by the oxidative decomposition of Ca,EDTA (calcium,ethylenediamine tetraacetate) chelates. Corona-treated PMMA films were soaked in a Ca,EDTA,PO4,H2O2 solution and aged at 63°C and pH,9 for times ranging from 1 to 24 h. Apatite formed on PMMA films was characterized by X-ray diffraction, Fourier transform infrared (FTIR), Scanning electron microscope, energy-dipersive X-ray spectroscopy, and carbon analysis. The apatite was found to be CO3HAp with Ca/P atomic ratio ranging between 1.3 and 1.9. Elemental analyses indicated that the carbonate content of the apatite phase was around 6.5 wt% after 24 h of aging time. Lattice parameters were estimated using a Rietveld profile-analysis and found to be a=0.9438 nm and c=0.6901 nm. Furthermore, FTIR spectra indicated that the apatite deposited on PMMA was B-type CO3HAp, in which carbonate ions occupy the phosphate sites. In the first 3 h of aging, isolated rod-like HAp particles were observed. With time, the needle-like crystallites radiate from a nucleus to form double-spherulite shape particles. The crystallites grew into a continuous layer with a thickness of ,15 ,m after 24-h aging. The adhesive strength between the PMMA substrate and the apatite layer was determined to be around 1.7 MPa. [source] In vivo evaluation of the trabecular bone behavior to porous electrostatic spray deposition-derived calcium phosphate coatingsCLINICAL ORAL IMPLANTS RESEARCH, Issue 3 2007Marijke C. Siebers Abstract Objectives: Electrostatic spray deposition (ESD) is a new technique to deposit calcium phosphate (CaP) coatings. The aim of the present study was to evaluate the bone behavior of ESD CaP-coated implants with various degrees of crystallinities in the trabecular bone of the femoral condyle of goats. Material and methods: Using the ESD technique, thin porous CaP coatings were deposited on tapered, conical, screw-shaped titanium implants. Three different heat-treatments were applied, resulting in amorphous CaP (400°C, ESD1), crystalline carbonate apatite (500°C, ESD2), and crystalline carbonated hydroxyapatite (700°C, ESD3). Implants were inserted into the trabecular bone of the femoral condyles of goats for 12 weeks, and titanium (Ti) implants served as controls. Results: The results showed that ESD-derived coatings are osteocompatible. Histomorphometrical analysis showed that the application of a CaP coating resulted in more bone contact along the press-fit area of the implant compared with the Ti implants. Moreover, the percentage bone contact of the ESD3-coated implants was increased, compared with the Ti control group. Regarding the other coatings, no differences were found compared with the control group. Conclusion: Crystalline carbonated hydroxyapatite ESD-coated implants positively influenced the biological performance compared with Ti control implants. [source] |