Carbon Losses (carbon + loss)

Distribution by Scientific Domains


Selected Abstracts


Warming and depth interact to affect carbon dioxide concentration in aquatic mesocosms

FRESHWATER BIOLOGY, Issue 4 2008
KYLA M. FLANAGAN
Summary 1. Climate change may significantly influence lake carbon dynamics and consequently the exchange of CO2 with the atmosphere. Warming will accelerate multiple processes that either absorb or release CO2, making predicting the net effect of warming on CO2 exchange with the atmosphere difficult. Here we experimentally test how the CO2 flux of deep and shallow systems responds to warming. To do this, we conducted a greenhouse experiment using mesocosms of two depths, experiencing either ambient or warmed temperatures. 2. Deeper mesocosms were found to have a lower average CO2 concentration than shallower mesocosms under ambient temperature conditions. In addition, warming interacts with mesocosm depth to affect the average CO2 concentration; there was no effect of warming on the average CO2 concentration of deep mesocosms, but shallow mesocosms had significantly lower average CO2 concentrations when warmed. 3. The difference in CO2 concentration resulting from the depth manipulation was due to varying loss rates of particulate carbon to the sediments. There was a strong negative correlation between CO2 and sedimentation rates in the deep mesocosms suggesting that high particulate carbon loss to the sediments lowered the CO2 concentration in the water column. There was no correlation between CO2 and sedimentation rates observed for shallow mesocosms suggesting enhanced carbon regeneration from the sediments was maintaining higher CO2 concentrations in the water column. 4. Relationships between CO2 and algal concentrations indicate that the reduction in CO2 concentrations resulting from warming is due to increased per capita algal turnover rates depleting CO2 in the water column. Our results suggest that the carbon dynamics and CO2 flux of shallow systems will be affected more by climate warming than deep systems and the net effect of warming is to increase CO2 uptake. [source]


Whole ecosystem metabolic pulses following precipitation events

FUNCTIONAL ECOLOGY, Issue 5 2008
G. D. Jenerette
Summary 1Ecosystem respiration varies substantially at short temporal intervals and identifying the role of coupled temperature- and precipitation-induced changes has been an ongoing challenge. To address this challenge we applied a metabolic ecological theory to identify pulses in ecosystem respiration following rain events. Using this metabolic framework, precipitation-induced pulses were described as a reduction in metabolic activation energy after individual precipitation events. 2We used this approach to estimate the responses of 237 individual events recorded over 2 years at four eddy-covariance sites in southern AZ, USA. The sites varied in both community type (woody and grass dominated) and landscape position (riparian and upland). We used a nonlinear inversion procedure to identify both the parameters for the pre-event temperature sensitivity and the predicted response of the temperature sensitivity to precipitation. By examining multiple events we evaluated the consistency of pulses between sites and discriminated between hypotheses regarding landscape position, event distributions, and pre-event ecosystem metabolism rates. 3Over the 5-day post-event period across all sites the mean precipitation effect was attributed to 6·1 g CO2 m,2 of carbon release, which represented a 21% increase in respiration over the pre-event steady state trajectory of carbon loss. Differences in vegetation community were associated with differences in the integrated magnitude of pulse responses, while differences in topographic position were associated with the initial peak pulse rate. In conjunction with the differences between sites, the individual total pulse response was positively related to the drying time interval and metabolic rates prior to the event. The quantitative theory presented provides an approach for understanding ecosystem pulse dynamics and helps characterized the dependence of ecosystem metabolism on both temperature and precipitation. [source]


Respiratory carbon loss of calcareous grasslands in winter shows no effects of 4 years' CO2 enrichment

FUNCTIONAL ECOLOGY, Issue 2 2002
M. Volk
Summary 1CO2 exchange measurements in long-term CO2 -enrichment experiments suggest large net carbon gains by ecosystems during the growing season that are not accounted for by above-ground plant biomass. Considerable amounts of C might therefore be allocated below ground. 2Winter ecosystem respiration from temperate grasslands under elevated CO2 may account for the loss of a significant part of the extra C gained during the growing season. To test this hypothesis, dark respiration was assessed throughout the winter of the fourth year of CO2 enrichment in a calcareous grassland. 3Using these data, a model was parameterized to estimate whole-winter respiratory CO2 losses. From November to February, 154 9 g C m,2 were respired under elevated CO2 and 144 5 g C m,2 under ambient [CO2], with no significant difference between the CO2 treatments. 4We conclude that (i) wintertime respiration does not constitute a larger C loss from the ecosystem at elevated CO2; and (ii) the absence of respiratory responses implies no extra growing-season C inputs with month-to-year turnover times at elevated CO2. [source]


Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004

GLOBAL CHANGE BIOLOGY, Issue 11 2009
YUANHE YANG
Abstract Climate warming is likely inducing carbon loss from soils of northern ecosystems, but little evidence comes from large-scale observations. Here we used data from a repeated soil survey and remote sensing vegetation index to explore changes in soil organic carbon (SOC) stock on the Tibetan Plateau during the past two decades. Our results showed that SOC stock in the top 30 cm depth in alpine grasslands on the plateau amounted to 4.4 Pg C (1 Pg=1015 g), with an overall average of 3.9 kg C m,2. SOC changes during 1980s,2004 were estimated at ,0.6 g C m,2 yr,1, ranging from ,36.5 to 35.8 g C m,2 yr,1 at 95% confidence, indicating that SOC stock in the Tibetan alpine grasslands remained relatively stable over the sampling periods. Our findings are nonconsistent with previous reports of loss of soil C in grassland ecosystems due to the accelerated decomposition with warming. In the case of the alpine grasslands on the Tibetan Plateau studied here, we speculate that increased rates of decomposition as soils warmed during the last two decades may have been compensated by increased soil C inputs due to increased grass productivity. These results suggest that soil C stock in terrestrial ecosystems may respond differently to climate change depending on ecosystem type, regional climate pattern, and intensity of human disturbance. [source]


Impact of past and present land-management on the C-balance of a grassland in the Swiss Alps

GLOBAL CHANGE BIOLOGY, Issue 11 2008
NELE ROGIERS
Abstract Grasslands cover about 40% of the ice-free global terrestrial surface, but their quantitative importance in global carbon exchange with the atmosphere is still highly uncertain, and thus their potential for carbon sequestration remains speculative. Here, we report on CO2 exchange of an extensively used mountain hay meadow and pasture in the Swiss pre-Alps on high-organic soils (7,45% C by mass) over a 3-year period (18 May 2002,20 September 2005), including the European summer 2003 heat-wave period. During all 3 years, the ecosystem was a net source of CO2 (116,256 g C m,2 yr,1). Harvests and grazing cows (mostly via C export in milk) further increased these C losses, which were estimated at 355 g C m,2 yr,1 during 2003 (95% confidence interval 257,454 g C m,2 yr,1). Although annual carbon losses varied considerably among years, the CO2 budget during summer 2003 was not very different from the other two summers. However, and much more importantly, the winter that followed the warm summer of 2003 observed a significantly higher carbon loss when there was snow (133±6 g C m,2) than under comparable conditions during the other two winters (73±5 and 70±4 g C m,2, respectively). The continued annual C losses can most likely be attributed to the long-term effects of drainage and peat exploitation that began 119 years ago, with the last significant drainage activities during the Second World War around 1940. The most realistic estimate based on depth profiles of ash content after combustion suggests that there is an 500,910 g C m,2 yr,1 loss associated with the decomposition of organic matter. Our results clearly suggest that putting efforts into preserving still existing carbon stocks may be more successful than attempts to increase sequestration rates in such high-organic mountain grassland soils. [source]


Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978,2003

GLOBAL CHANGE BIOLOGY, Issue 12 2007
PETE SMITH
Abstract We present results from modelling studies, which suggest that, at most, only about 10,20% of recently observed soil carbon losses in England and Wales could possibly be attributable to climate warming. Further, we present reasons why the actual losses of SOC from organic soils in England and Wales might be lower than those reported. [source]


Role of lakes for organic carbon cycling in the boreal zone

GLOBAL CHANGE BIOLOGY, Issue 1 2004
Grete Algesten
Abstract We calculated the carbon loss (mineralization plus sedimentation) and net CO2 escape to the atmosphere for 79 536 lakes and total running water in 21 major Scandinavian catchments (size range 437,48 263 km2). Between 30% and 80% of the total organic carbon that entered the freshwater ecosystems was lost in lakes. Mineralization in lakes and subsequent CO2 emission to the atmosphere was by far the most important carbon loss process. The withdrawal capacity of lakes on the catchment scale was closely correlated to the mean residence time of surface water in the catchment, and to some extent to the annual mean temperature represented by latitude. This result implies that variation of the hydrology can be a more important determinant of CO2 emission from lakes than temperature fluctuations. Mineralization of terrestrially derived organic carbon in lakes is an important regulator of organic carbon export to the sea and may affect the net exchange of CO2 between the atmosphere and the boreal landscape. [source]


Effects of nitrogen supply on water-use efficiency of higher plants

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2008
Holger Brueck
Abstract The worldwide increase of food demand and reduced sweet-water availability in some important food-producing regions raised interest in more efficient water use, which has become one of the central research topics in agriculture. Improved irrigation management and reduced bare-soil evaporation have highest priority to increase agronomic water-use efficiency (WUE). Compared to these technical (irrigation) and basic (crop production) management options, effects of nutrient management on WUE were less frequently considered. Twenty-nine publications on nitrogen (N) effects on biomass WUE of container-grown plants are considered in this review. Most of them indicate positive N effects on WUE, and relevance of N effects on intrinsic WUE and unproductive water and carbon loss is discussed. A plot of 90 published data of percent decreases of WUE and dry mass under variable N supply is presented. Extrapolation of biomass WUE from leaf measurements of intrinsic WUE is critically reviewed. The positive correlation between WUE and dry-mass formation suggests that physiological rather than stomatal effects are more important in order to explain positive N effects on WUE. [source]


The European carbon balance.

GLOBAL CHANGE BIOLOGY, Issue 5 2010
Part 3: forests
Abstract We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU-25) during 1990,2005. Upscaled terrestrial observations and model-based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m,2 yr,1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU-25). New estimates of the mean long-term carbon forest sink (net biome production, NBP) of EU-25 forests amounts 75±20 g C m,2 yr,1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory-based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m,2 yr,1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m,2 yr,1) is realized as woody biomass increments. In the EU-25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period. [source]


Plant diversity positively affects short-term soil carbon storage in experimental grasslands

GLOBAL CHANGE BIOLOGY, Issue 12 2008
SIBYLLE STEINBEISS
Abstract Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ,The Jena Experiment', a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0,30 cm decreased from 7.3 kg C m,2 in 2002 to 6.9 kg C m,2 in 2004, but had recovered to 7.8 kg C m,2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short-term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log-transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build-up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long-term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation. [source]


Impact of past and present land-management on the C-balance of a grassland in the Swiss Alps

GLOBAL CHANGE BIOLOGY, Issue 11 2008
NELE ROGIERS
Abstract Grasslands cover about 40% of the ice-free global terrestrial surface, but their quantitative importance in global carbon exchange with the atmosphere is still highly uncertain, and thus their potential for carbon sequestration remains speculative. Here, we report on CO2 exchange of an extensively used mountain hay meadow and pasture in the Swiss pre-Alps on high-organic soils (7,45% C by mass) over a 3-year period (18 May 2002,20 September 2005), including the European summer 2003 heat-wave period. During all 3 years, the ecosystem was a net source of CO2 (116,256 g C m,2 yr,1). Harvests and grazing cows (mostly via C export in milk) further increased these C losses, which were estimated at 355 g C m,2 yr,1 during 2003 (95% confidence interval 257,454 g C m,2 yr,1). Although annual carbon losses varied considerably among years, the CO2 budget during summer 2003 was not very different from the other two summers. However, and much more importantly, the winter that followed the warm summer of 2003 observed a significantly higher carbon loss when there was snow (133±6 g C m,2) than under comparable conditions during the other two winters (73±5 and 70±4 g C m,2, respectively). The continued annual C losses can most likely be attributed to the long-term effects of drainage and peat exploitation that began 119 years ago, with the last significant drainage activities during the Second World War around 1940. The most realistic estimate based on depth profiles of ash content after combustion suggests that there is an 500,910 g C m,2 yr,1 loss associated with the decomposition of organic matter. Our results clearly suggest that putting efforts into preserving still existing carbon stocks may be more successful than attempts to increase sequestration rates in such high-organic mountain grassland soils. [source]


Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978,2003

GLOBAL CHANGE BIOLOGY, Issue 12 2007
PETE SMITH
Abstract We present results from modelling studies, which suggest that, at most, only about 10,20% of recently observed soil carbon losses in England and Wales could possibly be attributable to climate warming. Further, we present reasons why the actual losses of SOC from organic soils in England and Wales might be lower than those reported. [source]


The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest

GLOBAL CHANGE BIOLOGY, Issue 9 2004
S. Rambal
Abstract Ecosystem respiration, arising from soil decomposition as well as from plant maintenance and growth, has been shown to be the most important component of carbon exchange in most terrestrial ecosystems. The goal of this study was to estimate the growth component of whole-ecosystem respiration in a Mediterranean evergreen oak (Quercus ilex) forest over the course of 3 years. Ecosystem respiration (Reco) was determined from night-time carbon dioxide flux (Fc) using eddy correlation when friction velocity (u*) was greater than 0.35 m s,1 We postulated that growth respiration could be evaluated as a residual after removing modeled base Reco from whole-ecosystem Reco during periods when growth was most likely occurring. We observed that the model deviated from the night-time Fc -based Reco during the period from early February to early July with the largest discrepancies occurring at the end of May, coinciding with budburst when active aboveground growth and radial growth increment are greatest. The highest growth respiration rates were observed in 2001 with daily fluxes reaching up to 4 g C m,2. The cumulative growth respiration for the entire growth period gave total carbon losses of 170, 208, and 142 g C m,2 for 1999, 2001, and 2002, respectively. Biochemical analysis of soluble carbohydrates, starch, cellulose, hemicellulose, proteins, lignin, and lipids for leaves and stems allowed calculation of the total construction costs of the different growth components, which yielded values of 154, 200, and 150 g C for 3 years, respectively, corresponding well to estimated growth respiration. Estimates of both leaf and stem growth showed very large interannual variation, although average growth respiration coefficients and average yield of growth processes were fairly constant over the 3 years and close to literature values. The time course of the growth respiration may be explained by the growth pattern of leaves and stems and by cambial activity. This approach has potential applications for interpreting the effects of climate variation, disturbances, and management practices on growth and ecosystem respiration. [source]


Potential for detecting changes in soil organic carbon concentrations resulting from climate change

GLOBAL CHANGE BIOLOGY, Issue 11 2003
Franz Conen
Abstract The interaction between soil organic carbon pools and climate change is an important determinant of future atmospheric CO2 concentrations. Much effort has so far been allocated to manipulative process studies and predictive modelling exercises. Here, we examine the potential for directly detecting predicted changes through repeated soil sampling. Two contrasting benchmark plots were selected in the steppe at the Russian,Mongolian border, where soil organic carbon losses are predicted to be around 10% over the first 50 years of climate change. In both plots, 50 samples were taken to 20 and 30 cm depths. The estimated time intervals before re-sampling by the same method that were likely to prove significant soil organic carbon losses (,=0.05; statistical power=0.90) were 43 and 26 years. [source]


The importance of rapid, disturbance-induced losses in carbon management and sequestration

GLOBAL ECOLOGY, Issue 1 2002
David D. Breshears
Abstract Management of terrestrial carbon fluxes is being proposed as a means of increasing the amount of carbon sequestered in the terrestrial biosphere. This approach is generally viewed only as an interim strategy for the coming decades while other longer-term strategies are developed and implemented , the most important being the direct reduction of carbon emissions. We are concerned that the potential for rapid, disturbance-induced losses may be much greater than is currently appreciated, especially by the decision-making community. Here we wish to: (1) highlight the complex and threshold-like nature of disturbances , such as fire and drought, as well as the erosion associated with each , that could lead to carbon losses; (2) note the global extent of ecosystems that are at risk of such disturbance-induced carbon losses; and (3) call for increased consideration of and research on the mechanisms by which large, rapid disturbance-induced losses of terrestrial carbon could occur. Our lack of ability as a scientific community to predict such ecosystem dynamics is precluding the effective consideration of these processes into strategies and policies related to carbon management and sequestration. Consequently, scientists need to do more to improve quantification of these potential losses and to integrate them into sound, sustainable policy options. [source]


A systems analysis of soil and forest degradation in a mid-hill watershed of Nepal using a bio-economic model

LAND DEGRADATION AND DEVELOPMENT, Issue 5 2005
B. K. Sitaula
Abstract Forest degradation, manifested through decline in forest cover, and the resulting soil erosion and organic carbon losses, is a serious problem caused by a complex coupling of bio-physical, socio-economic and technological factors in the Himalayan watersheds. Greater understanding of the linkages between these factors requires a systems approach. We have proposed such an approach using a bio-economic model to explore the system behaviour of forest degradation, soil erosion, and soil C losses in the forest areas. The outcome of the model simulation over a 20-year period indicates that soil erosion and C loss rates may increase more than four-fold by the year 2020 under the existing socio-economic and biophysical regime (the base scenario). Reductions in the population growth rate, introduction of improved agricultural technology and increase in the prices of major agricultural crops can help slow down the rates of forest decline, soil erosion and C loss or even stabilize or reverse them. The results suggest that economic incentives may be highly effective in the reduction of soil loss, as well as C release to the atmosphere. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Precipitates Temperature Dependence in Ion Beam Nitrited AISI H13 Tool Steel

PLASMA PROCESSES AND POLYMERS, Issue S1 2007
Luiz F. Zagonel
Abstract AISI H13 tool steel samples were nitrided using broad nitrogen ion beams in a high-vacuum chamber at different temperatures. At 400,°C, a thin , -Fe2-3N phase forms on the top of a shallow nitrided layer and the nitrogen distribution follows a complementary error function. At 500,°C, deviations from this behavior are observed and a thick , -Fe2-3N layer is formed. At 600,°C, no , -Fe2-3N phase is formed and the nitrogen profile is step-like. At such a temperature, coarse nitride precipitates are observed. Also, carbon losses (decarburizing) are observed upon nitriding at and above 500,°C. [source]