| |||
Carbohydrate Fractions (carbohydrate + fraction)
Selected AbstractsEffects of Amylopectin/Amylose Starch Ratio on Growth, Body Composition and Glycemic Response of Sunshine Bass Morone chrysops × M. saxatilisJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 3 2003Steven Rawles Manipulation of the ratio of amylopectin (,-[1,4] and ,-[1,6] linked glucose) to amylose (,-[1,41 linked glucose) starches in the carbohydrate fraction of the diet has been used to improve carbohydrate and lipid metabolism in mammalian models. A 10-wk feeding trial was conducted to determine the effect of dietary amylopectin/amylose ratio on growth and composition of growth of advanced sunshine bass (Morone chrysops × M. saxatilis) fingerlings (60 g, initial weight). Fish were fed cold-pelleted, semipurified, isonitrogenous (35% crude protein), isocaloric (3.6 kcaVg protein), isolipidic (5%) diets containing 25% carbohydrate. The carbohydrate fraction of the diets was composed of either glucose, dextrin, 100% amylopectin/0% amylose, 70% amylopectin/30% amylose, or 30% amylopectin/70% amylose. Diets differing in ratios of amylopectin/amylose were achieved by adjusting the proportion of high-amylopectin (100% amylopectin) to high-amylose (70% amylose) corn starch. Diets were fed to fish in quadruplicate 76-L tanks (seven fish/tank) connected to a brackish water (5-7%v) recirculating culture system with biofiltration. Weight gain ranged from 195 to 236% of initial weight (60 g) and was significantly greater (P < 0.1) for fish fed diets containing 25% carbohydrate as dextrin or as 70% amylose and significantly lower in fish fed diets in which carbohydrate was composed of 30% amylose, 100% amylopectin, or glucose. Feed efficiency ranged from 0.52 to 0.61 and was higher in fish fed the diet containing the highest concentration of amylose and lower in fish fed the diet containing glucose. Hepatosomatic index was highest (2.71) in fish fed the diet containing glucose and lowest (1.401.45) in fish fed diets containing high-amylose cornstarch. Intraperitoneal fat ratio was distinctly lower in fish fed diets containing some amylose as compared to those fed diets without amylose. Liver lipid was significantly lower (4.8%) in fish fed the diet containing glucose and almost twice as high (7.3-8.9%) in fish fed the diets containing any starch. Glycogen content of the liver decreased from approximately 12% in fish fed the diet containing glucose to 5% in fish fed the diets containing amylose. Muscle proximate composition and ratio were unaffected by the dietary treatments. Fasting levels (15 h) of blood glucose in fish reared for 10 wk on the diet containing glucose were significantly elevated (5.5 mmol/L) when compared to fasting levels of those that had been reared on diets containing starch (3.4-1.1 mmol/L). Fish fed the diet containing glucose exhibited maximum blood concentrations (14.6 mmoVL) 4 h postprandial then rapidly declined to nearly fasting levels within 8 h postprandial. In contrast, maximum plasma glucose concentrations in fish fed diets containing starch were roughly half (6.8-8.1 mmol/L) those of fish fed the diet containing glucose. Blood glucose in fish fed diets containing dextrin or predominantly amylopectin starch remained elevated longer than that of fish fed diets containing glucose or predominantly amylose starch. Glycemic response appeared to decrease with increasing dietary amylose content. These data suggest that feeding diets in which a greater portion of the starch is amylose may be a useful strategy for improving carbohydrate use in sunshine bass. [source] EFFECT OF EXTRUSION COOKING AND SODIUM BICARBONATE ADDITION ON THE CARBOHYDRATE COMPOSITION OF BLACK BEAN FLOURSJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2 2002JOSE DE J. BERRIOS ABSTRACT Extrusion cooking and chemical leavening agents such as sodium bicarbonate (NaHCO3), may induce changes in carbohydrate fractions of extruded black bean (Phaseolus vulgaris L.) flours. Bean flours at 20% moisture, with NaHCO3 added at levels from 0.0 to 2.0%, were extruded at a screw speed of 200 rpm. The temperature profile ranged from 23 to 160C. Extruded bean flours with 0.1 to 0.4% added NaHCO3 were selected for sugar analyses based on color and flavor acceptability. The major sugars determined in the bean samples were galactose (0.10%), sucrose (2.08%), and stachyose (2.00%). Extruded samples had an increase in total sugars. Also, an increase in soluble fiber and a decrease of insoluble fiber fractions were observed. Sucrose was the only free sugar which concentration decreased consistently as a result of extrusion processing. Extrusion conditions and the selected levels of NaHCO3 used in this study did not significantly change the oligosaccharide content of the black bean flours. [source] Identification of gas-producing components in different varieties of Phaseolus vulgaris by in vitro fermentationJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 6 2001M Granito Abstract Phaseolus vulgaris consumption has been limited as part of the occidental diet owing to flatulence production. Raffinose, stachyose and verbascose have been shown to be the main components responsible for flatulence; however, it is thought that soluble fibre could also be involved in this phenomenon. The aim of the present study was to identify the main components of beans influencing flatus. Ten varieties of P vulgaris originating from South America were first analysed for their main nutrient and carbohydrate fractions. Three of the varieties were then fractionated to extract soluble and insoluble fibres. Various combinations of ,-galactosides and soluble and insoluble fibre fractions, in similar proportions to those contained in cooked grains, were used as substrates for in vitro fermentation studies using human faecal inoculum to determine the fermentative capacity of each of the three fractions. Considering the white varieties, total gas production and acidification of the medium were correlated with fermented organic matter from soluble fibre (R2,=,1)) and with ,-galactosides (R2,=,0.75). On the other hand, tannins present in pigmented varieties did not seem to interfere significantly in fermentation of soluble fibre. The total production of gas per gram of mixed fractions of soluble fibre and ,-galactosides in proportions found in cooked grains was lower than that expected from each substrate separately. It can be concluded that soluble fibre and ,-galactosides are good substrates for endogenous colonic flora subjected to in vitro fermentation studies and are thus responsible for flatulence induced by legume consumption. © 2001 Society of Chemical Industry [source] Chemical characterization, energy values, protein and carbohydrate fractions, degradation kinetics of frost damaged wheat (with severely overall weight loss) in ruminantsANIMAL SCIENCE JOURNAL, Issue 2 2009Peiqiang YU ABSTRACT In Canada, frost damage can result in millions of tonnes of wheat that is not suitable for human consumption (such wheat is referred to as ,frozen') each year. There is a need to systematically evaluate the nutritive value of frozen wheat for ruminants. So far, little research has been conducted to determine the magnitude of the differences in nutritive value between frozen and normal wheat. The objectives of this study were to compare frozen wheat and normal wheat (AC Barrie) in terms of (i) chemical characteristics; (ii) protein and carbohydrate fractions; (iii) energy value; and (iv) rumen degradation kinetics. The results showed that the overall yield losses of the frozen wheat were around 24%. The frozen wheat was significantly lower (P < 0.05) in starch (47 vs. 62%DM), non-structural carbohydrates (60 vs. 70%DM), and non-protein N (63 vs. 93%SCP); and higher (P < 0.05) in crude fat (3 vs. 2%DM), acid (6 vs. 2%DM), neutral detergent fiber (22 vs. 10%DM), lignin (2 vs. 1%DM), acid (3 vs. 1%CP) and neutral detergent insoluble CP (19 vs. 14%CP). The frozen wheat was also lower in (P < 0.05) energy (TDN, DE3X, ME3X, NEL3X, DE4X, ME4X, NEL4X for dairy; ME, NEm, and NEg beef cattle). After partitioning of protein and carbohydrate (CHO) subfractions, the results showed that the frozen wheat was lower (P < 0.05) in the intermediately degradable CP (PB2: 47 vs. 59%CP); and higher in rapidly degradable CP (PB1: 12 vs. 2%CP) and unavailable CP (PC: 3 vs. 1%CP). The frozen wheat was also lower (P < 0.05) in intermediately degradable CHO (CB1: 60 vs. 77%CHO); and higher (P < 0.05) in slowly degradable CHO (CB2: 20 vs. 8%CHO) and unavailable CHO (CC: 5 vs. 2%CHO). The in situ results showed that the frozen wheat had different patterns in rumen degradation kinetics of protein and starch. The extent of the changes varied according to the specific nutrient examined. In conclusion, the frozen wheat differed in chemical characteristics, TDN and energy values, protein and carbohydrate fractions and in situ degradation behavior from normal wheat. The chemical and nutritional characterization of wheat was highly associated with climate condition (frost damage). The frost damage to the wheat reduced nutrient content and availability and thus reduced nutrient supply to ruminants. [source] |