Capillary Temperature (capillary + temperature)

Distribution by Scientific Domains


Selected Abstracts


Simultaneous determination of six non-polar heterocyclic amines in meat samples by supercritical fluid extraction,capillary electrophoresis under fluorimetric detection

ELECTROPHORESIS, Issue 13 2010
Fernando De Andrés
Abstract A novel, sensitive and selective method for the separation and quantification of a group of non-polar heterocyclic amines (9H-pyrido-[3,4-b] indole, norharmane; 1-methyl-9H-pyrido-[3,4-b] indole, harmane; 2-amino-9H-pyrido-[2,3-b] indole, A,C; 2-amino-3-methyl-9H-pyrido-[2,3-b] indole, MeA,C; 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b] indole, Trp-P-1 and 3-amino-1-methyl-5H-pyrido-[4,3-b] indole, Trp-P-2) in commercial meat samples has been developed. This methodology is faster than others previously described. The method is based on the combination of a supercritical fluid extraction procedure, followed by the analysis of the extracted plug by CE with fluorescence detection. The supercritical fluid extraction procedure was optimized for the clean-up of the samples and the extraction of the analytes. For the electrophoretic separation, the effect of composition, pH and concentration of buffer, organic modifier content, pressure and time of injection, capillary temperature and voltage applied were studied. A 10,mmol/L formic acid,ammonium formate,ACN (10%, v/v) solution at pH 1.5 was selected as the running electrolyte. With 5-s hydrodynamic injection, linear responses in the range from 100 to 1000,ng/mL and detection limits ranging from 15.9 to 28.1,ng/mL were obtained for different amines in less than 13,min. ACN,water (1:1 in volume) was used as a sample solvent. Fluorescence detection enhances the sensitivity and avoids interferences coming from non-fluorescent compounds present in the matrices of the sample extracts. [source]


Analysis of aristolochic acids by CE-MS with carboxymethyl chitosan-coated capillary

ELECTROPHORESIS, Issue 10 2009
Xiaofang Fu
Abstract A CE-MS method for rapid determination of aristolochic acid-I and aristolochic acid-II (AA-II) in traditional Chinese medicines and biological samples was described in the present paper. AA-I and AA-II can be baseline separated within 6,min by CE-MS with carboxymethyl-chitosan-coated capillary. CZE conditions including pH, concentration of buffer, applied voltage, and capillary temperature were systematically investigated, and the composition and flow rate of sheath liquid were also optimized for CE-MS. Furthermore, the CE-UV method without any additives in BGE solution was established and compared with the CE-MS method. The results showed that the two methods could achieve satisfactory separation efficiency, repeatability, and linearity, while the LOD was 0.6,,g/mL for CE-UV and 0.05,,g/mL for CE-MS. Compared with the CE-UV method, the sensitivity of CE-MS was significantly improved, in addition to the structure information provided by MS detection at the same time. As an application example, a spiked sample in human serum was analyzed by the CE-MS method, indicating that the new CE-MS method can be applied to analyze AAs in biological samples. [source]


Determination of tobacco-specific N -nitrosamines in rabbit serum by capillary zone electrophoresis and capillary electrophoresis-electrospray ionization-mass spectrometry with solid-phase extraction

ELECTROPHORESIS, Issue 11 2006
Chenchen Li
Abstract In this paper, we propose a new strategy for separation and determination of tobacco-specific N -nitrosamines (TSNAs), a group of strong carcinogens found only in tobacco products, by using CZE and CE-MS associated with SPE. Six TSNAs: N'-nitrosonornicotine, N'-nitrosoanatabine, N'-nitrosoanabasine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol, and 4-(methylnitrosamino)-4-(3-pyridyl)-1-butanol were simultaneously separated by either of two CZE methods, one of which worked with ammonium formate buffer (pH,2.5) and another with citrate buffer (pH,2.4), as well as a CE-MS method. The CZE conditions including pH and concentration of running buffer, capillary length, applied voltage, and capillary temperature were systematically optimized. For CE-MS method, an optimized sheath liquid consisted of methanol,water was used at a flow rate of 10,,L/min. With SPE procedure, our proposed CE-MS method was successfully applied to determine TSNAs after 15,min metabolism in rabbits. A comparison study between CZE and CE-MS methods for quantitative purposes was carried out, showing that both methods provided similar separation efficiency, selectivity, repeatability, linearity, and recovery. However, CE-MS method was better suited for the analysis of TSNAs in complicated biological samples for its sensitivity and extra information on molecular structure. Having good accordance with our previous work by using LC-MS, the new CE-MS method is expected to be an alternative to the LC-MS method and applied to study the metabolism of TSNAs. [source]


Application of polymeric surfactants in micellar electrokinetic chromatography-electrospray ionization mass spectrometry of benzodiazepines and benzoxazocine chiral drugs

ELECTROPHORESIS, Issue 5-6 2006
Jingguo Hou
Abstract Chiral micellar EKC (CMEKC) coupled to ESI-MS using polymeric surfactants as pseudostationary phases is investigated for simultaneous enantioseparation of two benzodiazepines, (±)-oxazepam ((±)-OXA) and (±)-lorazepam ((±)-LOR), and one benzoxazocine, (±)-nefopam ((±)-NEF). First, enantioselectivity and electrospray sensitivity of six chiral polymeric surfactants for all three chiral compounds are compared. Second, using poly(sodium N -undecenoyl- L -leucinate) as pseudostationary phase, the organic modifiers (methanol (MeOH), isopropanol, and ACN) are added into the running buffer to further improve chiral resolution (RS). Next, a CMEKC-ESI-MS method for the simultaneous enantioseparation of two benzodiazepines is further developed by using a dipeptide polymeric surfactant, poly(sodium N -undecenoxy carbonyl- L,L -leucyl-valinate) (poly- L,L -SUCLV). The CMEKC conditions including nebulizer pressure, capillary length, ammonium acetate concentration, pH, poly- L,L -SUCLV concentration, and capillary temperature were optimized to achieve maximum chiral RS and highest sensitivity of MS detection. The spray chamber parameters (drying gas temperature and drying gas flow rate) as well as sheath liquid conditions (MeOH content, pH, flow rate, and ionic strength) were found to significantly influence MS S/N of both (±)-OXA and (±)-LOR. Finally, a comparative study between simultaneous UV and MS detection showed high plate numbers, better chiral RS, and enhanced detectability with CMEKC-MS. However, speed of analysis was faster using CMEKC-UV. [source]


Method development and validation for the analysis of didanosine using micellar electrokinetic capillary chromatography

ELECTROPHORESIS, Issue 21 2005
Swapna Mallampati
Abstract A selective MEKC method was developed for the analysis of didanosine in bulk samples. Successful separation of didanosine from 13 of its potential impurities, derived from the various synthetic preparation procedures, was achieved. As CZE gave poor separation selectivity, MEKC was preferable. The use of EKC allowed achievement of the separation in a significantly shorter time than conventional HPLC. An anionic long-chain surfactant, lithium dodecyl sulfate (LiDS), was used as the pseudostationary phase and sodium tetraborate buffer as the aqueous phase. In order to obtain the optimal conditions and to test the method robustness, a central composite response surface modeling experiment was performed. The optimized electrophoretic conditions include the use of an uncoated fused-silica capillary with a total length of 40,cm and an ID of 50,,m, a BGE containing 40,mM sodium tetraborate and 110,mM LiDS at pH,8.0, an applied voltage of 18.0,kV, and the capillary temperature maintained at 15°C. The method was found to be robust. The parameters for validation such as linearity, precision, and sensitivity are also reported. Three commercial bulk samples were analyzed with this system. [source]


Chiral capillary electrophoresis applied to the determination of phenylglycidol enantiomers obtained from cinnamyl alcohol by asymmetric epoxidation using new titanium(IV) alkoxide compounds as catalysts

ELECTROPHORESIS, Issue 16 2004
Sonia Morante-Zarcero
Abstract A capillary electrophoresis method for the simultaneous determination of phenylglycidol enantiomers in the presence of an excess of cinnamyl alcohol was developed. The effects of the nature, pH and concentration of the buffer, the nature and concentration of chiral selector, the addition of methanol or acetonitrile, and the capillary temperature on the chiral resolution of phenylglycidol enantiomers were studied. Separations were achieved using 20 mM succinylated ,-cyclodextrin dissolved in a 10 mM borate buffer (pH 10.0). Chiral resolution for the phenylglycidol enantiomers in the optimized electrophoretic conditions was higher than 2.0 with an analysis time less than 7 min. The method developed was validated in terms of selectivity, linearity, precision (instrumental repeatability, method repeatability, intermediate precision), the limits of detection and quantitation, and accuracy. Limits of detection of 6.5 mg/L and 8.3 mg/L for (2S,3S)-(,)-3-phenylglycidol ((S,S)-PG) and (2R,3R)-(+)-3-phenylglycidol ((R,R)-PG), respectively, were obtained. The method was applied to study the asymmetric epoxidation of cinnamyl alcohol with titanium(IV) alkoxide compounds as catalysts in order to evaluate their catalytic activity and stereoselectivity of the epoxidation processes. [source]


Polymeric alkenoxy amino acid surfactants: II.,Chiral separations of ,-blockers with multiple stereogenic centers

ELECTROPHORESIS, Issue 6 2004
Syed A. A. Rizvi
Abstract Two amino acid-based (leucine and isoleucine) alkenoxy micelle polymers were employed in this study for the separation of multichiral center-bearing ,-blockers, nadolol and labetalol. These polymers include polysodium N -undecenoxy carbonyl- L -leucinate (poly- L -SUCL) and polysodium N -undecenoxy carbonyl- L -isoleucinate (poly- L -SUCIL). Detailed synthesis and characterization were reported in our previous paper [26]. It was found that poly- L -SUCIL gives better chiral separation than poly- L -SUCL for both nadolol and labetalol isomers. The use of 50,100 mM poly- L -SUCIL as a single chiral selector provided separation of four and three isomers of labetalol and nadolol, respectively. Further optimization in separation of both enantiomeric pairs of nadolol and labetalol was achieved by evaluation of type and concentration of organic solvents, capillary temperature as well type and concentration of cyclodextrins. A synergistic approach, using a combination of poly- L -SUCIL and sulfated ,-CD (S-,-CD) was evaluated and it showed dramatic separation for enantiomeric pairs of nadolol. On the other hand for labetalol enantiomers, separation was slightly decreased or remain unaffected using the dual chiral selector system. Finally, simultaneous separation of both nadolol and labetalol enantiomers was achieved in a single run using 25 mM poly- L -SUCIL and 5% w/v of S-,-CD in less then 35 min highlighting the importance of high-throughput chiral analysis. [source]


Capillary zone electrophoresis with a dynamic double coating for analysis of carbohydrate-deficient transferrin in human serum: Impact of resolution between disialo- and trisialotransferrin on reference limits

ELECTROPHORESIS, Issue 24 2003
Christian Lanz
Abstract Capillary electrophoresis with a dynamic double coating formed by charged polymeric reagents represents a very effective tool for the separation of iron-saturated transferrin (Tf) isoforms and thus the determination of carbohydrate-deficient transferrin (CDT) in human serum. The resolution between di- and trisialo-Tf is dependent on the applied voltage and capillary temperature. With a 50 ,m inside diameter (ID) capillary of about 60 cm total length mounted into the P/ACE MDQ, 28 kV and 40°C, the resolution of the two Tf isoforms is shown to be between 1.0 and 1.4, whereas with reduced voltage and/or temperature, increased resolution at the expense of elongated run times is observed. Best data with complete resolution (Rs , 1.4) are obtained at 20 kV and 30°C. For the determination of CDT in serum, incomplete separation of di- and trisialo-Tf is demonstrated to have an impact on the reference limits. Analysis of the sera of 54 healthy individuals with no or moderate alcohol consumption and using valley-to-valley peak integration, the upper (lower) reference limits for CDT in relation to total Tf at the two power levels are 1.33 (0.52) and 1.57 (0.81)%, respectively, representing intervals that are significantly different (P < 0.001). Furthermore, the reference intervals are shown to be strongly dependent on the peak integration approach used. Valley-to-valley peak integration should only be employed for conditions with complete resolution between disialo- and trisialo-Tf. [source]


Determination of enantiomeric purity of a novel COX-2 anti-inflammatory drug by capillary electrophoresis using single and dual cyclodextrin systems

ELECTROPHORESIS, Issue 9 2003
Carlos Pérez-Maseda
Abstract E-6087 is the most advanced compound among the cyclooxygenase-2 (COX-2) inhibitor drugs developed in our company. Its activity is mainly associated with the S(,)-enantiomer (E-6232), whereas the R(,)-enantiomer (E-6231) becomes an impurity whose content should be determined. Five main impurities and degradation products of E-6232 have been found (E-6144, E-6024, E-6072, E-6397 and E-6132), and some of them co-elute with the distomer when using a chiral high-performance liquid chromatography (HPLC) method. Consequently, we have optimized the separation of all the impurities from the two enantiomers of E-6087 by capillary electrophoresis (CE), in order to use the method for the enantiomeric purity determination of E-6232. The effect of the methanol (MeOH) content in the background electrolyte (BGE), the sulfobutyl ether-,-cyclodextrin (SBE-,-CD) and heptakis-(2,6-di- O -methyl)-,-cyclodextrin (DM-,-CD) concentration, and the capillary temperature have been studied. Separation of all compounds could be achieved in different systems, either in a single CD-system (with SBE-,-CD) or in a dual CD-system (with DM-,-CD as a neutral CD). By using the dual CD system a limit of detection (LOD) and a limit of quantitation (LOQ) of 0.03% and 0.1% of distomer, respectively, were achieved*. [source]


Enantioselective separation of chiral vicinal diols in capillary electrophoresis using a mono-6A -aminoethylamino-,-cyclodextrin as a chiral selector

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 1 2009
Peng Liu
Abstract This paper describes an improved access to mono-6A -aminoethylamino-,-CD (,-CDen), a very efficient cationic chiral selector for CZE in the separation of eight chiral aromatic vicinal diols. The ,-CDen concentration has a strong influence on the efficiency of enantioseparation. The effects of the pH and concentration of the BGE, the capillary temperature, and the applied voltage on the resolution and separation selectivity have been studied. Excellent chiral resolution was achieved under the optimal conditions of ,-CDen 10 mM, pH 10, 200 mM borate buffer at 15 kV and 20°C within 20 min. Moreover, the developed method was successfully applied to the determination of the enantiomeric purity of the catalytic asymmetric dihydroxylation (AD) reaction products. [source]


Capillary electrophoretic chiral separation of Cinchona alkaloids using a cyclodextrin selector

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6-7 2008
Dimitrios Tsimachidis
Abstract A new capillary electrophoretic method for the chiral separation of four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) was developed using heptakis-(2,6-di- O -methyl)-,-cyclodextrin as the chiral selector. The inner walls of the separation capillary were modified with a thin polyacrylamide layer, which substantially reduced the electroosmotic flow and improved the chiral resolution and the reproducibility of the migration time of the analytes. Various operation parameters were optimised, including the pH, the capillary temperature, the concentration of the background electrolyte, and the concentration of the chiral selector. Baseline separation of the two diastereomer pairs was achieved in 12 minutes in ammonium acetate background electrolyte pH 5.0 with addition of cyclodextrin in a concentration of 3 mM or higher. [source]


Determination of quinolizidine alkaloids in Sophora tonkinensis by HPCE

PHYTOCHEMICAL ANALYSIS, Issue 4 2005
Pei-lan Ding
Abstract A simple, rapid and reliable high-performance capillary electrophoresis method has been developed to determine quantitatively the alkaloid content of Sophora tonkinensis, a Chinese herb commonly known as shan-dou-gen. A total of seven quinolizidine alkaloids (cytisine, sophocarpine, matrine, lehmannine, sophoranol, oxymatrine and oxysophocarpine) could be readily separated within 15 min. The running buffer was 50 mM phosphate buffer (pH 2.5) containing 1% hydroxypropyl- , -cyclodextrin and 3.3% isopropanol in water. The applied voltage was 25 kV, the capillary temperature was 25°C, the detection wavelength was 200 nm and scopolamine butylbromide was used as internal standard. The method was used to analyse the chemical constituents of two commercial alternatives to shan-dou-gen. The alkaloid constituents of authentic shan-dou-gen gave a specific HPCE electropherogram that could be used to distinguish the drug from potential substitutes. Furthermore, the content of oxymatrine and the total content of the seven quinolizidine alkaloids could be used as quantitative markers in order to assess the quality of S. tonkinensis. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Effects of electrospray capillary temperature on amide hydrogen exchange

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2008
Stephen J. Coales
Amide hydrogen/deuterium (H/D) exchange coupled with proteolysis, high-perfeomance liquid chromatographic (HPLC) separation and mass spectrometry (MS) has become a powerful tool to study protein dynamics in solution. Prior to the execution of H/D exchange experiments, various experimental parameters have to be set, including proteolysis, HPLC, and MS conditions. Here we investigate the effects of electrospray capillary temperature on deuterium retention in backbone amides of various pepsin-generated cytochrome c peptides. Lower capillary temperature generally helps retain more deuterium than higher capillary temperature. When the capillary temperature was 150°C, on average 26% more deuterium was retained than when the capillary temperature was set at 250°C. The effects of capillary temperature varied depending on the ions monitored. There was little difference in deuterium retention among different charge state species of the same peptide at 150°C. However, a lower charge state ion loses more deuterium atoms going from 150°C to 250°C than the corresponding higher charge state species. These results indicate that the capillary temperature should be optimized not only to maximize the signal-to-noise of each ion followed in H/D exchange experiments, but also to minimize the deuterium loss of the ions. Also the loss of deuterium in several ions, especially lower charge state ones, should be monitored in the optimization, as the temperature effects vary among ions and are more significant for lower charge state ions. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Preliminary study of the analysis of oligogalacturonic acids by electrospray ionization mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2001
Liang Zhu
During systematic studies of the behavior of oligogalacturonic acids (OGAs) under different conditions using electrospray ionization mass spectrometry (ESI-MS), cation adduction, fragmentation and non-covalent binding were found to be the three major problems that compromised the analysis of OGAs by ESI-MS. By adjusting solution components, capillary temperature and capillary voltage in the ESI source, an optimized condition was found that gave a clean and clear spectrum of trigalacturonic acid. A direct injection ESI-MS technique based on the use of aqueous acetonitrile and acetic acid and triethylamine (TEA) as modifiers has been applied to analyze a mixture including mono-, di- and trigalacturonic acids, which will facilitate further applications of ESI-MS in the analysis of mixtures of OGAs. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Determination of quinocide as impurity in primaquine tablets by capillary zone electrophoresis

BIOMEDICAL CHROMATOGRAPHY, Issue 5 2009
Abdalla A. Elbashir
Abstract A capillary zone electrophoretic method has been developed and validated for the determination of the impurity quinocide (QC) in the antimalarial drug primaquine (PQ). Different buffer additives such as native cyclodextrins and crown ethers were evaluated. Promising results were obtained when either , -cyclodextrin (, -CD) or 18-crown-6 ether (18C6) were used. Their separation conditions such as type of buffer and its pH, buffer additive concentration, applied voltage capillary temperature and injection time were optimized. The use of 18C6 offers slight advantages over , -CD such as faster elution times and improved resolution. Nevertheless, migration times of less than 5 min and resolution factors (Rs) in the range of 2,4 were obtained when both additives were used. The method was validated with respect to selectivity, linearity, limits of detection and quantitation, analytical precision (intra- and inter-day variability) and repeatability. Concentrations of 2.12 and 2.71% (w/w) of QC were found in pharmaceutical preparations of PQ from two different manufacturers. A possible mechanism for the successful separation of the isomers is also discussed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Enantioselective analysis of primaquine and its impurity quinocide by capillary electrophoresis

BIOMEDICAL CHROMATOGRAPHY, Issue 3 2009
Abdalla A. Elbashir
Abstract A capillary electrophoretic (CE) method for the baseline separation of the enantiomers of primaquine diphosphate (PQ) and quinocide (QC) (a major contaminant) in pharmaceutical formulations is proposed. Both components were separated under the following conditions: 50 mm tris phosphate buffer (pH 3.0) containing 15 mm hydroxypropyl- , -cyclodextrin (HP- , -CD) as background electrolyte; applied voltage, 16 kV; capillary temperature, 25°C; detection wavelength, 254 nm; hydrostatic injection, 10 s. The separations were conducted using a 35 cm length and 50 µm i.d. uncoated fused silica capillary column. Under the optimized conditions, the components were successfully separated in about 5 min. Intraday precision of migration time and corrected peak areas when expressed as relative standard deviation ranged from 0.17 to 0.45 and 2.60 to 3.94%, respectively, while the interday precision ranged from 2.59 to 4.20 and 3.15 to 4.21%, respectively. After the validation exercise, the proposed method was applied for the determination of QC impurity in PQ formulations. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Separation and determination of isoflavones in red clover by micellar electrokinetic capillary chromatography

BIOMEDICAL CHROMATOGRAPHY, Issue 9 2007
Yu Zhang
Abstract A micellar electrokinetic capillary chromatography (MECC) method has been developed for the determination of the four isoflavones, i.e. biochanin A, formononetin, genstein and daidzein in red clover (Trifolium Pratense L.). The effect of running buffer pH and concentration were investigated. An electrolyte composed of 30 mm borate, 20 mm sodium dodecyl sulfate (SDS) and 4 mg/mL HP- , -CD containing 5% (v/v) ethanol at pH 10.1 provides a satisfactory separation for all the analytes. The applied voltage was 25 kV, and the capillary temperature was kept constant at 25°C with a UV detection at 254 nm. The relative standard deviations (RSD) of the migration time and peak area were less than 1.73 and 3.94% (intra-day), and 2.29 and 4.38% (inter-day), respectively, under the optimized separation conditions. Regression equations revealed a good linear relationship between the peak area of each compound and its concentration. The contents of the four compounds in red clover were successfully determined with satisfactory repeatability and recovery. Copyright © 2007 John Wiley & Sons, Ltd. [source]