| |||
Canopy Area (canopy + area)
Selected AbstractsThe role of leaf inclination, leaf orientation and plant canopy architecture in soil particle detachment by raindropsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2005Kirsten Foot Abstract A laboratory investigation of the effect of plant architecture on soil particle detachment by rainfall is described. The effects of leaf inclination, leaf orientation, effective canopy area, leaf area index, leaf subcatchment area, lowest canopy area, largest canopy area, canopy overlap area and an alternative leaf area index are examined using artificial plants. Detachment from a 30 cm diameter splash cup filled with sand (150 µm,1 mm particle size) was measured under three types of plant (small leaved, broad leaved and long narrow leaved) for a 10 minute simulated rainstorm of 75 mm/h intensity. There were no significant differences in soil particle detachment between the three plant types or between detachment under the plants and detachment of bare soil. No significant relationships were obtained between detachment and any of the plant parameters. Soil particle detachment by leaf drips can offset any protective effects of the canopy so that detachment does not differ significantly from that on bare soil. Plant architecture significantly affected the distance from the plant stem at which detachment was concentrated even though the canopy diameters of the plants were similar. There would appear to be no advantages in a detailed description of plant architecture and its effects in process-based models of soil erosion. Parameters such as plant height and plant canopy area are sufficient descriptors for modelling plant effects. Copyright © 2005 John Wiley & Sons, Ltd. [source] Structural biomass partitioning in regrowth and undisturbed mesquite (Prosopis glandulosa): implications for bioenergy usesGCB BIOENERGY, Issue 1 2010R. JAMES ANSLEY Abstract Honey mesquite (Prosopis glandulosa Torr.) which grows on grasslands and rangelands in southwestern USA may have potential as a bioenergy feedstock because of existing standing biomass and regrowth potential. However, regrowth mesquite physiognomy is highly different from undisturbed mesquite physiognomy and little is known regarding growth rates and structural biomass allocation in regrowth mesquite. We compared canopy architecture, aboveground biomass and relative allocation of biomass components in regrowth (RG) trees of different known ages with undisturbed (UD) trees of similar canopy height to each RG age class. RG trees in most age classes (2,12 years old) had greater canopy area, leaf area, basal stem number, twig (<0.5 cm diameter) mass and small stem (0.5,3 cm diameter) mass than UD trees of the same height. Large stem (>3 cm diameter) mass was similar between RG and UD trees in all height classes. Ages of UD trees were determined after harvest and further comparisons were made between age, canopy structure and biomass in RG and UD trees. Relationships between age and total mass, age and height, and age and canopy area indicated a faster growth rate in RG than in UD trees. Large stem mass as a percentage of total tree mass accumulated more rapidly with age in RG than UD trees. Leaf area index and leaf : twig mass ratio were maintained near 1 in all RG and UD trees. Regrowth potential may be one of the most important features of mesquite in consideration as a bioenergy feedstock. [source] Disposition of rainwater under creosotebushHYDROLOGICAL PROCESSES, Issue 13 2003Athol D. Abrahams Abstract In desert shrubland ecosystems water and nutrients are concentrated beneath shrub canopies in ,resource islands'. Rain falling on to these islands reaches the ground as either stemflow or throughfall and then either infiltrates into the soil or runs off as overland flow. This study investigates the partitioning of rainwater between stemflow and throughfall in the first instance and between infiltration and runoff in the second. Two series of 40 rainfall simulation experiments were performed on 16 creosotebush shrubs in the Jornada Basin, New Mexico. The first series of experiments was designed to measure the surface runoff and was performed with each shrub in its growth position. The second series was designed to measure stemflow reaching the shrub base and was conducted with the shrub suspended above the ground. The experimental data show that once equilibrium is achieved, 16% of the rainfall intercepted by the canopy or 6·7% of the rain falling inside the shrub area (i.e. the area inside the shrub's circumscribing ellipse) is funnelled to the shrub base as stemflow. This redistribution of the rainfall by stemflow is a function of the ratio of canopy area (i.e. the area covered by the shrub canopy) to collar area (i.e. a circular area centred on the shrub base), with stemflow rate being positively correlated and throughfall rate being negatively correlated with this ratio. The surface runoff rate expressed as a proportion of the rate at which rainwater arrives at a point (i.e. stemflow rate plus throughfall rate) is the runoff coefficient. A multiple regression reveals that 75% of the variance in the runoff coefficient can be explained by three independent variables: the rainfall rate, the ratio of the canopy area to the collar area, and the presence or absence of subcanopy vegetation. Although the last variable is a dummy variable, it accounts for 66·4% of the variance in the runoff coefficient. This suggests that the density and extent of the subcanopy vegetation is the single most important control of the partitioning of rainwater between runoff and infiltration beneath creosotebush. Although these findings pertain to creosotebush, similar findings might be expected for other desert shrubs that generate significant stemflow and have subcanopy vegetation. Copyright © 2003 John Wiley & Sons, Ltd. [source] Relative competitive performance of 63 species of terrestrial herbaceous plantsJOURNAL OF VEGETATION SCIENCE, Issue 1 2002P. Keddy Gleason & Cronquist (1963); Morton & Venn (1990) Abstract. There is growing evidence that plant and animal species are arranged in hierarchies of relative competitive performance. More work is needed to determine which plant traits best predict relative competitive performance. We therefore measured relative competitive performance of 63 terrestrial herbaceous plant species using Trichostema brachiatum as a reference species (that is, phytometer or target species). The neighbour species came from a wide array of terrestrial vegetation types (e.g. rock barrens, alvars, old fields), and represented a wide array of growth forms (e.g. small rosette species such as Saxifraga virginiensis and large clonal graminoids such as Agropyron repens). The experiment was repeated with two pot sizes: large (control) and small (stress treatment). Relative competitive performance in large pots (controls) was highly correlated with that in small pots (stress treatment) (r = 0.90, p < 0.001). The hierarchy of relative competitive performance in the large pots was also highly correlated with the hierarchy in the small (stressed) pots (rs = 0.91, p < 0.001). Principal components analysis and multiple linear regression showed that plant size (measured by total biomass, above-ground biomass, below-ground biomass, canopy area, height and leaf area index) and leaf shape (measured as length to width ratio, length, width) were the two characteristics that best predicted relative competitive performance (large pots, r2 = 0.55; small pots, r2 = 0.48). [source] Potential contribution of selected canopy traits to the tolerance of foliar disease by spring barleyPLANT PATHOLOGY, Issue 6 2009I. J. Bingham A model of canopy photosynthesis and above-ground growth rate was used to investigate the potential impact of several canopy traits on tolerance of foliar disease by barley. Disease tolerance was defined as the reduction in predicted crop dry-matter growth rate per unit of visible disease symptoms. The traits were canopy area (leaf area index, LAI), light extinction coefficient (k) and the ratio of virtual to visible lesion size (,). The effects of altering the area of the healthy flag leaf and its light-saturated rate of photosynthesis (Pmax) in response to disease elsewhere on the plant were also investigated. The model was parameterized for spring barley and run with a solar radiation and temperature regime typical of north-east Scotland. Predicted reductions in growth rate per unit increase in disease were greatest at high disease severity and when disease was distributed relatively uniformly through the canopy. Tolerance was increased by increasing LAI to >3 and k to >0·3, but the beneficial effects depended on the severity and, to a lesser extent, the distribution of disease. Tolerance was reduced by increasing ,. A sensitivity analysis performed at a single disease severity and distribution showed that tolerance was most sensitive to variations in , and compensatory adjustments in area and Pmax of the flag leaf, and least sensitive to whole canopy LAI and k. Future research should quantify the genetic variation in these traits within barley germplasm to evaluate the scope for improving the disease tolerance of spring barley. [source] A model of the effect of fungicides on disease-induced yield loss, for use in wheat disease management decision support systemsANNALS OF APPLIED BIOLOGY, Issue 1 2007A. Milne Abstract A model of the effect of foliar-applied fungicides on disease-induced yield loss is described, parameterised and tested. The effects of fungicides on epidemics of Septoria tritici (leaf blotch), Puccinia striiformis (yellow rust), Blumeria graminis f.sp. tritici (powdery mildew) and Puccinia triticina (brown rust) on winter wheat were simulated using dose,response curve parameters. Where two or more active substances were applied together, their joint action was estimated using an additive dose model where the active substances had the same mode of action or a multiplicative survival model where the modes of action differed. By coupling the model with models of wheat canopy growth and foliar disease published previously, it was possible to estimate disease-induced yield loss for a prescribed fungicide programme. The difference in green canopy area and, hence, interception of photosynthetically active radiation between simulated undiseased and diseased (but treated) crop canopies was used to estimate yield loss. The model was tested against data from field experiments across a range of sites, seasons and wheat cultivars and was shown to predict the observed disease-induced yield loss with sufficient accuracy to support fungicide treatment decisions. A simple method of accounting for uncertainty in the predictions of yield loss is described. Fungicide product, dose and spray timing combinations selected using the coupled models responded appropriately to disease pressure and cultivar disease resistance. [source] Influence of canopy tree size on stand basal area may reflect uncoupling of crown expansion and trunk diameter growthAUSTRAL ECOLOGY, Issue 2 2003Christopher H. Lusk Abstract A recent article by Midgley and colleagues suggests that large trees give rise to inordinately high stand basal areas because they pack canopy space more efficiently than smaller trees. We argue that this phenomenon bears more relation to the fact that diameter increment is not necessarily accompanied by significant crown expansion during all stages of a tree's life. Using data from a canopy tree population in an old-growth temperate forest, we found that crown area scaled as roughly the 3/5 power of trunk basal area. Rather than reflecting fixed scaling laws, we suggest that this pattern arises because of limited opportunities for crown expansion in dense stands. Old canopy trees in dense stands can thus accumulate large basal areas without occupying a commensurately large canopy area. [source] Low-resolution remotely sensed images of winegrape vineyards map spatial variability in planimetric canopy area instead of leaf area indexAUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 1 2008A. HALL Abstract Background and Aims:, Knowledge of the spatial variability of grapevine canopy density is useful in managing the variability of grape composition and yield. Rapid assessment of the characteristics of vineyards by remote sensing offers distinct advantages over ground-based measurements. In an effort to capture such advantages, this study aimed to assess the relative contribution to LAI of grapevine canopy density and grapevine canopy area derived from high-spatial-resolution airborne digital imagery. Methods and Results:, High-spatial-resolution airborne NDVI imagery of minimally pruned, unconfined (i.e. not confined by trellising) grapevines was used to partition image pixels into grapevine-only and non-grapevine groupings. An evaluation of the relative contributions of grapevine planimetric area (number of grapevine pixels across a single row) and leaf layers (NDVI of grapevine-only pixels) found that the variability observed across the vineyard was dominated by changes in canopy area rather than grapevine-only NDVI. Conclusion:, The primary predictive variable of grapevine LAI is canopy area. Low-spatial-resolution NDVI imagery of minimally pruned, unconfined vineyards is therefore effective in mapping spatial variability in planimetric canopy area, rather than LAI. Significance of the Study:, The process of estimating grapevine LAI from mixed pixels has incorrectly assumed that both components of LAI within a pixel's footprint, namely the number of leaf layers and planimetric canopy area, produce a consistent response in NDVI. Correlations between NDVI and LAI reported in previous studies based on low-resolution imagery most likely relied on the proxy relationship between NDVI and canopy area. [source] |