Cannabinoids

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Cannabinoids

  • endogenous cannabinoid
  • synthetic cannabinoid

  • Terms modified by Cannabinoids

  • cannabinoid agonist
  • cannabinoid cb1
  • cannabinoid cb1 receptor
  • cannabinoid receptor
  • cannabinoid receptor agonist
  • cannabinoid receptor antagonist
  • cannabinoid receptor ligand
  • cannabinoid system

  • Selected Abstracts


    Cannabinoid,vanilloid receptor interactions in pain signaling

    JOURNAL OF NEUROCHEMISTRY, Issue 2003
    V. Di Marzo
    Agents that activate cannabinoid CB1 receptors for marijuana's active principal, THC, or vanilloid VR1 receptors for red chilli peppers' pungent ingredient, capsaicin, modulate pain perception. Stimulation of presynaptic CB1 leads to inhibition of glutamate release in the spinal cord, whereas VR1 stimulation causes release of substance P and CGRP from DRG neurons. VR1 undergoes rapid desensitization by its agonists, which makes VR1-expressing neurons insensitive to subsequent stimulation and results in analgesia. Thus, both CB1 and VR1, which are coexpressed in several spinal and DRG neurons, are targets for analgesic drug development. CB1 and VR1 also share endogenous agonists, namely anandamide, NADA and some of their analogs, and may be regarded as metabotropic and ionotropic receptors for the same family of mediators, with opposing roles in pain perception. The development of ,hybrid' CB1/VR1 agonists as potent analgesics and the functional relationships between CB1 and VR1 in sensory neurons will be discussed. [source]


    Potential role of the cannabinoid receptor CB1 in the pathogenesis of erosive and non-erosive gastro-oesophageal reflux disease

    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 4 2010
    C. Calabrese
    Aliment Pharmacol Ther 2010; 32: 603,611 Summary Background, Cannabinoid (CB) receptors have been located in brain areas involved in the triggering of TLESRs as well as in the nodose ganglion from which vagal afferents emanate. The distribution of CB1 receptors has been investigated in the human gastrointestinal mucosa, as expression of inflammatory process. Aim, To evaluate the CB1 expression in oesophageal mucosa. Methods, A total of 87 consecutive subjects were enrolled: 10 controls, 39 NERD and 38 erosive oesophagitis. Eight specimens were taken from macroscopically normal mucosa. Five were processed by haematoxylin,eosin, MIB1/CB1 evaluation and three for the RNA and proteins extraction. Results, The mean MIB1-LI value was 31% and 22% in NERD and ERD patients, respectively, compared to 68% in the healthy subjects. Mean CB1mRNA/GUSB mRNA value of the controls was 0.66, while in GERD patients, it was 0.28. In NERD and ERD, the mean values of CB1/GUSB were 0.38 and 0.17, respectively, with highly significant differences between the NERD vs. ERD groups. Semi-quantitative analysis of CB1 expression, performed with WB, shows in NERD patients a higher CB1 receptor expression than ERD patients. Conclusions, With this study, we showed for the first time the presence of CB1 receptors in the human oesophageal epithelium. [source]


    Cannabinoid signalling in the enteric nervous system

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 9 2009
    J. J. Galligan
    Abstract, Cannabinoid signalling is an important mechanism of synaptic modulation in the nervous system. Endogenous cannabinoids (anandamide and 2-arachidonyl-glycerol) are synthesized and released via calcium-activated biosynthetic pathways. Exogenous cannabinoids and endocannabinoids act on CB1 and CB2 receptors. CB1 receptors are neuronal receptors which couple via G-proteins to inhibition of adenylate cyclase or to activation or inhibition of ion channels. CB2 receptors are expressed by immune cells and cannabinoids can suppress immune function. In the central nervous system, the endocannabinoids may function as retrograde signals released by the postsynaptic neuron to inhibit neurotransmitter release from presynaptic nerve terminals. Enteric neurons also express CB receptors. Exogenously applied CB receptor agonists inhibit enteric neuronal activity but it is not clear if endocannabinoids released by enteric neurons can produce similar responses in the enteric nervous system (ENS). In this issue of Neurogastroenterology and Motility, Boesmans et al. show that CB1 receptor activation on myenteric neurons maintained in primary culture can suppress neuronal activity, inhibit synaptic transmission and mitochondrial transport along axons. They also provide initial evidence that myenteric neurons (or other cell types present in the cultures) release endocannabinoids and which activate CB1 receptors constitutively. These data provide new information about targets for cannabinoid signalling in the ENS and highlight the potential importance of CB receptors as drug targets. It is necessary that future work extends these interesting findings to intact tissues and ideally to the in vivo setting. [source]


    Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 9 2009
    W. Boesmans
    Abstract, Cannabinoid (CB) receptors are expressed in the enteric nervous system (ENS) and CB1 receptor activity slows down motility and delays gastric emptying. This receptor system has become an important target for GI-related drug development such as in obesity treatment. The aim of the study was to investigate how CB1 ligands and antagonists affect ongoing activity in enteric neurone networks, modulate synaptic vesicle cycling and influence mitochondrial transport in nerve processes. Primary cultures of guinea-pig myenteric neurones were loaded with different fluorescent markers: Fluo-4 to measure network activity, FM1-43 to image synaptic vesicles and Mitotracker green to label mitochondria. Synaptic vesicle cluster density was assessed by immunohistochemistry and expression of CB1 receptors was confirmed by RT-PCR. Spontaneous network activity, displayed by both excitatory and inhibitory neurones, was significantly increased by CB1 receptor antagonists (AM-251 and SR141716), abolished by CB1 activation (methanandamide, mAEA) and reduced by two different inhibitors (arachidonylamide serotonin, AA-5HT and URB597) of fatty acid amide hydrolase. Antagonists reduced the number of synaptic vesicles that were recycled during an electrical stimulus. CB1 agonists (mAEA and WIN55,212) reduced and antagonists enhanced the fraction of transported mitochondria in enteric nerve fibres. We found immunohistochemical evidence for an enhancement of synaptophysin-positive release sites with SR141716, while WIN55,212 caused a reduction. The opposite effects of agonists and antagonists suggest that enteric nerve signalling is under the permanent control of CB1 receptor activity. Using inhibitors of the endocannabinoid degrading enzyme, we were able to show there is endogenous production of a CB ligand in the ENS. [source]


    New Bibenzyl Cannabinoid from the New Zealand Liverwort Radula marginata

    CHEMINFORM, Issue 14 2003
    Masao Toyota
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    The Use of a Synthetic Cannabinoid in the Management of Treatment-Resistant Nightmares in Posttraumatic Stress Disorder (PTSD)

    CNS: NEUROSCIENCE AND THERAPEUTICS, Issue 1 2009
    George A. Fraser
    This is the report of an open label clinical trial to evaluate the effects of nabilone, an endocannabinoid receptor agonist, on treatment-resistant nightmares in patients diagnosed with posttraumatic stress disorder (PTSD). Methods: Charts of 47 patients diagnosed with PTSD and having continuing nightmares in spite of conventional antidepressants and hypnotics were reviewed after adjunctive treatment with nabilone was initiated. These patients had been referred to a psychiatric specialist outpatient clinic between 2004 and 2006. The majority of patients (72%) receiving nabilone experienced either cessation of nightmares or a significant reduction in nightmare intensity. Subjective improvement in sleep time, the quality of sleep, and the reduction of daytime flashbacks and nightsweats were also noted by some patients. The results of this study indicate the potential benefits of nabilone, a synthetic cannabinoid, in patients with PTSD experiencing poor control of nightmares with standard pharmacotherapy. This is the first report of the use of nabilone (Cesamet; Valeant Canada, Ltd., Montreal, Canada) for the management of treatment-resistant nightmares in PTSD. [source]


    Temporal indication of cannabis use by means of THC glucuronide determination

    DRUG TESTING AND ANALYSIS, Issue 11-12 2009
    Ute Mareck
    Abstract According to the regulations of the World Anti-Doping Agency (WADA), the use of cannabinoids is forbidden in competition. In doping controls, the detection of cannabinoid misuse is based on the analysis of the non-psychoactive metabolite 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (carboxy-THC). The determination of values greater than 15 ng/mL in urine represents an adverse analytical finding; however, no accurate prediction of the time of application is possible as the half-life of carboxy-THC ranges between three and four days. Consequently the detection of carboxy-THC in doping control urine samples collected in competition might also result from cannabis use in out-of-competition periods. The analysis of the glucuronide of the pharmacologically active delta 9-tetrahydrocannabinol (THC-gluc) may represent a complementary indicator for the detection of cannabis misuse in competition. An assay for the determination of THC-gluc in human urine was established. The sample preparation consisted of liquid-liquid extraction of urine specimens, and extracts were analysed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Authentic doping-control urine samples as well as specimens obtained from a controlled smoking study were analysed and assay characteristics such as specificity, detection limit (0.1 ng/mL), precision (>90%), recovery (,80%), and extraction efficiency (90%) were determined. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges

    EPILEPSIA, Issue 8 2010
    Clementina M. Van Rijn
    Summary Purpose:, Genetically epileptic WAG/Rij rats develop spontaneous absence-like seizures after 3 months of age. We used WAG/Rij rats to examine whether absence seizures are associated with changes in the expression of type-1 cannabinoid (CB1) receptors. Methods:, Receptor expression was examined by in situ hybridization and western blot analysis in various brain regions of "presymptomatic" 2-month old and "symptomatic" 8-month-old WAG/Rij rats relative to age-matched nonepileptic control rats. Furthermore, we examined whether pharmacologic activation of CB1 receptor affects absence seizures. We recorded spontaneous spike-wave discharges (SWDs) in 8-month old WAG/Rij rats systemically injected with the potent CB1 receptor agonist, R(+)WIN55,212-2 (3,12 mg/kg, s.c.), given alone or combined with the CB1 receptor antagonist/inverse agonist, AM251 (12 mg/kg, s.c.). Results:, Data showed a reduction of CB1 receptor mRNA and protein levels in the reticular thalamic nucleus, and a reduction in CB1 receptor protein levels in ventral basal thalamic nuclei of 8-month-old WAG/Rij rats, as compared with age-matched ACI control rats. In vivo, R(+)WIN55,212-2 caused a dose-dependent reduction in the frequency of SWDs in the first 3 h after the injection. This was followed by a late increase in the mean SWD duration, which suggests a biphasic modulation of SWDs by CB1 receptor agonists. Both effects were reversed or attenuated when R(+)WIN55,212-2 was combined with AM251. Discussion:, These data indicate that the development of absence seizures is associated with plastic modifications of CB1 receptors within the thalamic-cortical-thalamic network, and raise the interesting possibility that CB1 receptors are targeted by novel antiabsence drugs. [source]


    Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2010
    Véronique M. André
    Abstract Striatal medium-sized spiny neurons (MSSNs) receive glutamatergic inputs modulated presynaptically and postsynaptically by dopamine. Mice expressing the gene for enhanced green fluorescent protein as a reporter gene to identify MSSNs containing D1 or D2 receptor subtypes were used to examine dopamine modulation of spontaneous excitatory postsynaptic currents (sEPSCs) in slices and postsynaptic N -methyl- d -aspartate (NMDA) and ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) currents in acutely isolated cells. The results demonstrated dopamine receptor-specific modulation of sEPSCs. Dopamine and D1 agonists increased sEPSC frequency in D1 receptor-expressing MSSNs (D1 cells), whereas dopamine and D2 agonists decreased sEPSC frequency in D2 receptor-expressing MSSNs (D2 cells). These effects were fully (D1 cells) or partially (D2 cells) mediated through retrograde signaling via endocannabinoids. A cannabinoid 1 receptor (CB1R) agonist and a blocker of anandamide transporter prevented the D1 receptor-mediated increase in sEPSC frequency in D1 cells, whereas a CB1R antagonist partially blocked the decrease in sEPSC frequency in D2 cells. At the postsynaptic level, low concentrations of a D1 receptor agonist consistently increased NMDA and AMPA currents in acutely isolated D1 cells, whereas a D2 receptor agonist decreased these currents in acutely isolated D2 cells. These results show that both glutamate release and postsynaptic excitatory currents are regulated in opposite directions by activation of D1 or D2 receptors. The direction of this regulation is also specific to D1 and D2 cells. We suggest that activation of postsynaptic dopamine receptors controls endocannabinoid mobilization, acting on presynaptic CB1Rs, thus modulating glutamate release differently in glutamate terminals projecting to D1 and D2 cells. [source]


    Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
    Jatinder Ahluwalia
    Abstract The effect of anandamide, which activates both the cannabinoid 1 (CB1) receptor and the vanilloid receptor 1 (VR1), was studied on calcitonin gene-related peptide (CGRP) release from cultured primary sensory neurons, the majority of which coexpress the CB1 receptor and VR1. Concentrations of anandamide <,1 µm produced a small but significant CB1 receptor-mediated inhibition of basal CGRP release while higher concentrations induced VR1-mediated CGRP release. The excitatory effect of anandamide was potentiated by the CB1 receptor antagonist SR141716A. In the presence of SR141716A at concentrations <,100 nm, anandamide was equipotent with capsaicin in stimulating CGRP release. However, at higher concentrations anandamide produced more CGRP release than equimolar concentrations of capsaicin. Three and ten nanomolar anandamide inhibited the capsaicin-evoked CGRP release. In the presence of SR141716A, treatments which activated protein kinase A, protein kinase C and phospholipase C significantly potentiated the anandamide-evoked CGRP release at all anandamide concentrations. Although this potentiation was reduced when the CB1 receptor antagonist was omitted from the buffer, the CGRP release evoked by 300 nm and 1 µm anandamide was still significantly larger than that seen with nonpotentiated cells. These data indicate that anandamide may regulate CGRP release from capsaicin-sensitive primary sensory neurons in vivo, and that the net effect of anandamide on transmitter release from capsaicin-sensitive primary sensory neurons depends on the concentration of anandamide and the state of the CB1 receptor and VR1. These findings also suggest that anandamide could be one of the molecules responsible for the development of inflammatory heat hyperalgesia. [source]


    Activation of spinal cannabinoid 1 receptors inhibits C-fibre driven hyperexcitable neuronal responses and increases [35S]GTP,S binding in the dorsal horn of the spinal cord of noninflamed and inflamed rats

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2000
    L. J. Drew
    Abstract The analgesic potential of cannabinoid (CB) receptor agonists is of clinical interest. Improved understanding of the mechanisms of action of cannabinoids at sites involved in the modulation of acute and sustained inflammatory nociceptive transmission, such as the spinal cord, is essential. In vivo electrophysiology was used to compare the effect of the synthetic CB agonist, HU210, on acute transcutaneous electrical-evoked responses of dorsal horn neurons of noninflamed anaesthetized rats and anaesthetized rats with a peripheral carrageenin inflammation. CB receptor G-protein coupling in lumbar spinal cord sections of noninflamed and carrageenin-inflamed rats was studied with in vitro autoradiography of guanylyl 5,-[,-[35S]thio]triphosphate ([35S]GTP,S) binding. Spinal HU210 significantly inhibited the C-fibre-mediated late (300,800 ms) postdischarge response of dorsal horn neurons of noninflamed and carrageenin-inflamed rats; the CB1 receptor antagonist SR141716A blocked the effect of HU210. HU210 had limited effects on A-fibre-evoked dorsal horn neuronal responses of both groups of rats. HU210 significantly increased [35S]GTP,S binding in the dorsal horn of the spinal cord of both groups of rats compared with basal [35S]GTP,S binding; SR141716A blocked these effects. The predominant effect of spinal HU210, via CB1 receptor activation, was on the C-fibre driven postdischarge responses, a measure of neuronal hyperexcitability following repetitive C-fibre stimulation. Sustained, but not enhanced, antinociceptive effects of HU210 following carrageenin inflammation are reported; CB receptor G-protein coupling was not altered by inflammation. These results strengthen the body of evidence suggesting CB agonists may be an important novel analgesic approach for the treatment of sustained pain states. [source]


    The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors

    FEBS JOURNAL, Issue 7 2001
    Tiziana Bisogno
    It is not yet clear if the endocannabinoid 2-arachidonoylglycerol (2-AG) is transported into cells through the same membrane transporter mediating the uptake of the other endogenous cannabinoid, anandamide (N -arachidonoylethanolamine, AEA), and whether this process (a) is regulated by cells and (b) limits 2-AG pharmacological actions. We have studied simultaneously the facilitated transport of [14C]AEA and [3H]2-AG into rat C6 glioma cells and found uptake mechanisms with different efficacies but similar affinities for the two compounds (Km 11.0 ± 2.0 and 15.3 ± 3.1 µm, Bmax 1.70 ± 0.30 and 0.24 ± 0.04 nmol·min,1·mg protein,1, respectively). Despite these similar Km values, 2-AG inhibits [14C]AEA uptake by cells at concentrations (Ki = 30.1 ± 3.9 µm) significantly higher than those required to either 2-AG or AEA to inhibit [3H]2-AG uptake (Ki = 18.9 ± 1.8 and 20.5 ± 3.2 µm, respectively). Furthermore: (a) if C6 cells are incubated simultaneously with identical concentrations of [14C]AEA and [3H]2-AG, only the uptake of the latter compound is significantly decreased as compared to that observed with [3H]2-AG alone; (b) the uptake of [14C]AEA and [3H]2-AG by cells is inhibited with the same potency by AM404 (Ki = 7.5 ± 0.7 and 10.2 ± 1.7 µm, respectively) and linvanil (Ki = 9.5 ± 0.7 and 6.4 ± 1.2 µm, respectively), two inhibitors of the AEA membrane transporter; (c) nitric oxide (NO) donors enhance the uptake of both [14C]AEA and [3H]2-AG, thus suggesting that 2-AG action can be regulated through NO release; (d) AEA and 2-AG induce a weak release of NO that can be blocked by a CB1 cannabinoid receptor antagonist, and significantly enhanced in the presence of AM404 and linvanil, thus suggesting that transport into C6 cells limits the action of both endocannabinoids. [source]


    Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis

    INFLAMMATORY BOWEL DISEASES, Issue 11 2009
    Martin A. Storr MD
    Abstract Background: Activation of cannabinoid (CB)1 receptors results in attenuation of experimental colitis. Our aim was to examine the role of CB2 receptors in experimental colitis using agonists (JWH133, AM1241) and an antagonist (AM630) in trinitrobenzene sulfonic acid (TNBS)-induced colitis in wildtype and CB2 receptor-deficient (CB mice. Methods: Mice were treated with TNBS to induce colitis and then given intraperitoneal injections of the CB2 receptor agonists JWH133, AM1241, or the CB2 receptor antagonist AM630. Additionally, CB mice were treated with TNBS and injected with JWH133 or AM1241. Animals were examined 3 days after the induction of colitis. The colons were removed for macroscopic and microscopic evaluation, as well as the determination of myeloperoxidase activity. Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) for CB2 receptor was also performed in animals with TNBS and dextran sodium sulfate colitis. Results: Intracolonic installation of TNBS caused severe colitis. CB2 mRNA expression was significantly increased during the course of experimental colitis. Three-day treatment with JWH133 or AM1241 significantly reduced colitis; AM630 exacerbated colitis. The effect of JWH133 was abolished when animals were pretreated with AM630. Neither JWH133 nor AM1241 had effects in CB mice. Conclusions: We show that activation of the CB2 receptor protects against experimental colitis in mice. Increased expression of CB2 receptor mRNA and aggravation of colitis by AM630 suggests a role for this receptor in normally limiting the development of colitis. These results support the idea that the CB2 receptor may be a possible novel therapeutic target in inflammatory bowel disease. (Inflamm Bowel Dis 2009) [source]


    The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism , or inverse agonism , as potential obesity treatment and other therapeutic use

    JOURNAL OF CLINICAL PHARMACY & THERAPEUTICS, Issue 3 2007
    S. Xie Pharm D student
    Summary There is considerable evidence that the endocannabinoid (endogenous cannabinoid) system plays a significant role in appetitive drive and associated behaviours. It is therefore reasonable to hypothesize that the attenuation of the activity of this system would have therapeutic benefit in treating disorders that might have a component of excess appetitive drive or over-activity of the endocannabinoid system, such as obesity, ethanol and other drug abuse, and a variety of central nervous system and other disorders. Towards this end, antagonists of cannabinoid receptors have been designed through rational drug discovery efforts. Devoid of the abuse concerns that confound and impede the use of cannabinoid receptor agonists for legitimate medical purposes, investigation of the use of cannabinoid receptor antagonists as possible pharmacotherapeutic agents is currently being actively investigated. The compound furthest along this pathway is rimonabant, a selective CB1 (cannabinoid receptor subtype 1) antagonist, or inverse agonist, approved in the European Union and under regulatory review in the United States for the treatment of obesity. This article summarizes the basic science of the endocannabinoid system and the therapeutic potential of cannabinoid receptor antagonists, with emphasis on the treatment of obesity. [source]


    Behavioural and gene transcription alterations induced by spontaneous cannabinoid withdrawal in mice

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2003
    José M. Oliva
    Abstract This study examined behavioural signs that occur during tolerance development to cannabinoid treatment and hormonal and gene expression alterations induced by spontaneous cannabinoid withdrawal in mice. Tolerance to CP-55,940 treatment developed for hypothermia, ambulatory and exploratory locomotor activity. Cessation of cannabinoid treatment resulted in a behavioural withdrawal syndrome characterized by a pronounced increase in ambulatory activity and rearings. Corticosterone plasma concentrations dramatically increased 24 and 72 h after cessation of cannabinoid treatment. Similarly, an increase (40%) in cannabinoid [35S]GTP,S binding autoradiography was detected on days 1 and 3 of abstinence. Spontaneous cannabinoid withdrawal produced time-related significant alterations in gene transcription: (i) decreased (20%) tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area and increased (50%) in substantia nigra; (ii) increased proenkephalin (PENK) gene expression more than 100% in caudate-putamen, nucleus accumbens, olfactory tubercle and piriform cortex; (iii) increased (20,40%) pro-opiomelanocortin (POMC) gene expression in the arcuate nucleus of the hypothalamus. These results suggest that spontaneous cannabinoid withdrawal occur after cessation of CP-55,940 treatment. This ,syndrome' includes behavioural, hormonal and gene transcription alterations that seems to be part of the regulation of neuronal plasticity induced by spontaneous cannabinoid withdrawal. [source]


    Cannabinoid receptor ligands as potential anticancer agents , high hopes for new therapies?

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2009
    Susanne Oesch
    Abstract Objectives The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB1 receptor is predominantly expressed in neurons but is also co-expressed with the CB2 receptor in peripheral tissues. In recent years, CB receptor ligands, including ,9 -tetrahydrocannabinol, have been proposed as potential anticancer agents. Key findings This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB1 and CB2 receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels. Summary The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB2 -selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB1 receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents. [source]


    Review article: visceral hypersensitivity in irritable bowel syndrome: molecular mechanisms and therapeutic agents

    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2009
    A. AKBAR
    Summary Background, Although development of visceral pain is an important defensive mechanism, hypersensitivity results in a significant clinical problem and is likely to be one of the major factors involved in the pathogenesis of abdominal and chest pain in functional bowel disorders (FBDs). Understanding of the molecular mechanisms involved in peripheral sensitization of visceral nociceptors has advanced as a result of the experimental studies, especially in animal models, which have led to knowledge and identification of key mediators and receptors. Aim, To provide a comprehensive review focused on the peripheral mechanisms believed to be responsible for sensitization and potential molecular targets for a disorder which is common, distressing and has sub-optimal treatment options. Methods, Literature review using Ovid and Pubmed from 1966. Results, There is substantial interest in the development of new drugs for treatment of FBDs in the background of advances in understanding the molecular and physiological mechanisms of visceral hypersensitivity. The potential drug targets include TPRV1, ASICs, voltage-gated sodium channels, ATP, PAR-2, cannabinoid, prostaglandin, tachykinin and 5HT3 receptors. Conclusion, It is anticipated that with advancing molecular understanding of the basis of visceral hypersensitivity, the next decade will see accelerated development of new molecules for treatment of functional bowel diseases. [source]


    Nondopaminergic mechanisms in levodopa-induced dyskinesia

    MOVEMENT DISORDERS, Issue 8 2005
    Jonathan M. Brotchie PhD
    Abstract It has become increasingly apparent that Parkinson's disease involves many transmitter systems other than dopamine. This nondopaminergic involvement impacts on the generation of symptoms, on the neurodegenerative process, but, most tellingly, in the generation of side effects of current treatments, in particular, levodopa-induced dyskinesia (LID). Such mechanisms contribute not only to the expression of LID once it has been established but also to the mechanisms responsible for the development, or priming, of the dyskinetic state and the subsequent maintenance of the brain in that primed state. Within the basal ganglia, abnormalities in different nondopaminergic components of the circuitry have been defined in LID. In particular, a role for enhanced inhibition of basal ganglia outputs by the GABAergic direct pathway has been suggested as a basic mechanism generating LID. We speculate that the external globus pallidus and subthalamic nucleus may play distinct roles in different forms of dyskinesia, e.g., chorea/dystonia; peak/diphasic/off. At the cellular level, an appreciation of abnormal signaling by, among others, glutamatergic (NMDA and AMPA receptors in particular), ,2 adrenergic, serotonergic (5HT), cannabinoid and opioid mechanisms in both priming and expression of LID has begun to emerge over the last decade. This is being consolidated, though in many cases questions remain regarding the specific sites of such abnormality within the circuitry. Very recently, at the molecular level, mechanisms controlling neurotransmitter release and impacting on the ability of neurons to maintain particular forms of firing patterning and synchronization, e.g., SV2A, have been identified. This increased understanding has already delivered and will continue to define novel approaches to treatment that target both pre- and postsynaptic signaling molecules throughout the basal ganglia circuitry. © 2005 Movement Disorder Society [source]


    Cannabinoid signalling in the enteric nervous system

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 9 2009
    J. J. Galligan
    Abstract, Cannabinoid signalling is an important mechanism of synaptic modulation in the nervous system. Endogenous cannabinoids (anandamide and 2-arachidonyl-glycerol) are synthesized and released via calcium-activated biosynthetic pathways. Exogenous cannabinoids and endocannabinoids act on CB1 and CB2 receptors. CB1 receptors are neuronal receptors which couple via G-proteins to inhibition of adenylate cyclase or to activation or inhibition of ion channels. CB2 receptors are expressed by immune cells and cannabinoids can suppress immune function. In the central nervous system, the endocannabinoids may function as retrograde signals released by the postsynaptic neuron to inhibit neurotransmitter release from presynaptic nerve terminals. Enteric neurons also express CB receptors. Exogenously applied CB receptor agonists inhibit enteric neuronal activity but it is not clear if endocannabinoids released by enteric neurons can produce similar responses in the enteric nervous system (ENS). In this issue of Neurogastroenterology and Motility, Boesmans et al. show that CB1 receptor activation on myenteric neurons maintained in primary culture can suppress neuronal activity, inhibit synaptic transmission and mitochondrial transport along axons. They also provide initial evidence that myenteric neurons (or other cell types present in the cultures) release endocannabinoids and which activate CB1 receptors constitutively. These data provide new information about targets for cannabinoid signalling in the ENS and highlight the potential importance of CB receptors as drug targets. It is necessary that future work extends these interesting findings to intact tissues and ideally to the in vivo setting. [source]


    The cannabinoid CB2 receptor: a good friend in the gut

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 9 2007
    A. A. Izzo
    Abstract, Mammalian tissues express the cannabinoid 1 (CB1) receptor and the cannabinoid 2 (CB2) receptor, the latter being involved in inflammation and pain. In somatic nerve pathways, the analgesic effects of CB2 agonism are well documented. Two papers published in the Journal have provided evidence that CB2 receptor activation inhibits visceral afferent nerve activity in rodents. These exciting findings are discussed in the context of recent data highlighting the emerging role of CB2 receptor as a critical target able to counteract hypermotility in pathophysiological states, gut inflammation and possibly colon cancer. [source]


    Architecture of cannabinoid signaling in mouse retina

    THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 18 2010
    Sherry Shu-Jung Hu
    Abstract Cannabinoid receptors and their ligands constitute an endogenous signaling system that is found throughout the body, including the eye. This system can be activated by ,9 -tetrahydrocannabinol, a major drug of abuse. Cannabinoids offer considerable therapeutic potential in modulating ocular immune and inflammatory responses and in regulating intraocular pressure. The location of cannabinoid receptor 1 (CB1) in the retina is known, but recently a constellation of proteins has been identified that produce and break down endocannabinoids (eCBs) and modulate CB1 function. Localization of these proteins is critical to defining specific cannabinoid signaling circuitry in the retina. Here we show the localization of diacylglycerol lipase-, and -, (DGL,/,), implicated in the production of the eCB 2-arachidonoyl glycerol (2-AG); monoacylglycerol lipase (MGL) and ,/,-hydrolase domain 6 (ABHD6), both implicated in the breakdown of 2-AG; cannabinoid receptor-interacting protein 1a (CRIP1a), a protein that may modulate CB1 function; and fatty acid amide hydrolase (FAAH) and N -acylethanolamine-hydrolyzing acid amidase (NAAA), which have been shown to break down the eCB anandamide and related acyl amides. Our most prominent finding was that DGL, is present in postsynaptic type 1 OFF cone bipolar cells juxtaposed to CB1 -containing cone photoreceptor terminals. CRIP1a is reliably presynaptic to DGL,, consistent with a possible role in cannabinoid signaling, and NAAA is restricted to retinal pigment epithelium, whereas DGL, is limited to retinal blood vessels. These results taken together with previous anatomical and functional studies define specific cannabinoid circuitry likely to modulate eCB signaling at the first synapse of the retina as well as in the inner plexiform layer. J. Comp. Neurol. 518:3848,3866, 2010. © 2010 Wiley-Liss, Inc. [source]


    Synaptic heterogeneity between mouse paracapsular intercalated neurons of the amygdala

    THE JOURNAL OF PHYSIOLOGY, Issue 1 2007
    Raffaella Geracitano
    GABAergic medial paracapsular intercalated (Imp) neurons of amygdala are thought of as playing a central role in fear learning and extinction. We report here that the synaptic network formed by these neurons exhibits distinct short-term plastic synaptic responses. The success rate of synaptic events evoked at a frequency range of 0.1,10 Hz varied dramatically between different connected cell pairs. Upon enhancing the frequency of stimulation, the success rate increased, decreased or remained constant, in a similar number of cell pairs. Such synaptic heterogeneity resulted in inhibition of the firing of the postsynaptic neurons with different efficacies. Moreover, we found that the different synaptic weights were mainly determined by diversity in presynaptic release probabilities rather than postsynaptic changes. Sequential paired recording experiments demonstrated that the same presynaptic neuron established the same type of synaptic connections with different postsynaptic neurons, suggesting the absence of target-cell specificity. Conversely, the same postsynaptic neuron was contacted by different types of synaptic connections formed by different presynaptic neurons. A detailed anatomical analysis of the recorded neurons revealed discrete and unexpected peculiarities in the dendritic and axonal patterns of different cell pairs. In contrast, several intrinsic electrophysiological responses were homogeneous among neurons, and synaptic failure counts were not affected by presynaptic cannabinoid 1 or GABAB receptors. We propose that the heterogeneous functional connectivity of Imp neurons, demonstrated by this study, is required to maintain the stability of firing patterns which is critical for the computational role of the amygdala in fear learning and extinction. [source]


    NO signalling decodes frequency of neuronal activity and generates synapse-specific plasticity in mouse cerebellum

    THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
    Shigeyuki Namiki
    Nitric oxide (NO) is an intercellular messenger regulating neuronal functions. To visualize NO signalling in the brain, we generated a novel fluorescent NO indicator, which consists of the heme-binding region (HBR) of soluble guanylyl cyclase and the green fluorescent protein. The indicator (HBR,GFP) was expressed in the Purkinje cells of the mouse cerebellum and we imaged NO signals in acute cerebellar slices upon parallel fibre (PF) activation with a train of burst stimulations (BS, each BS consisting of five pulses at 50 Hz). Our results showed that the intensity of synaptic NO signal decays steeply with the distance from the synaptic input near PF,Purkinje cell synapses and generates synapse-specific long-term potentiation (LTP). Furthermore, the NO release level has a bell-shaped dependence on the frequency of PF activity. At an optimal frequency (1 Hz), but not at a low frequency (0.25 Hz) of a train of 60 BS, NO release as well as LTP was induced. However, both NO release and LTP were significantly reduced at higher frequencies (2,4 Hz) of BS train due to cannabinoid receptor-mediated retrograde inhibition of NO generation at the PF terminals. These results suggest that synaptic NO signalling decodes the frequency of neuronal activity to mediate synaptic plasticity at the PF,Purkinje cell synapse. [source]


    The CB1 Cannabinoid Receptor Agonist, HU-210, Reduces Levodopa-Induced Rotations in 6-Hydroxydopamine-Lesioned Rats

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 2 2003
    Yossi Gilgun-Sherki
    However, several other neurotransmitters, such as serotonin, ,-amino-butyric acid and glutamate, are also related to the symptoms of Parkinson's disease patients and their response to levodopa treatment. The co-expression of cannabinoid and dopamine receptors in the basal ganglia suggests a potential role for endocannabinoids in the control of voluntary movement in Parkinson's disease. In the present study we treated unilaterally 2,4,5-trihydroxyphenethylamine (6-hydroxydopamine)-lesioned rats with the enantiomers of the synthetic cannabinoid 7-hydroxy-,6 -tetrahydrocannabinol 1,1-dimethylheptyl. Treatment with its (,), (3R, 4R) enantiomer (code-name HU-210), a potent cannabinoid receptor type 1 agonist, reduced the rotations induced by levodopa/carbidopa or apomorphine by 34% and 44%, respectively. In contrast, treatment with the (+), (3S, 4S) enantiomer (code-name HU-211), an N-methyl-D-aspartate antagonist, as well as the psychotropically inactive cannabis constituent: cannabidiol and its primary metabolite, 7-hydroxy-cannabinol, did not show any reduction of rotational behavior. Our results indicate that activation of the CB1 stimulates the dopaminergic system ipsilaterally to the lesion, and may have implications in the treatment of Parkinson's disease. [source]


    Anandamide improves the impaired nitric oxide-mediated neurogenic relaxation of the corpus cavernosum in diabetic rats: involvement of cannabinoid CB1 and vanilloid VR1 receptors

    BJU INTERNATIONAL, Issue 6 2007
    Mehdi Ghasemi
    OBJECTIVE To investigate the ability of acute administration of the endogenous cannabinoid, anandamide, in vitro to alter the nonadrenegic noncholinergic (NANC)-mediated relaxation of corpus cavernosum (CC) in diabetic rats and the possible role of nitric oxide (NO), as it is well known that erectile dysfunction (ED) affects 35,75% of men with diabetes mellitus and several studies have been conducted to find appropriate strategies for treating diabetes-induced ED. MATERIALS AND METHODS Diabetes was induced in rats by streptozotocin administration and was maintained for 8 weeks. The CC were removed and isolated in organ baths for pharmacological studies. Agonist-evoked or electrical-field stimulation (EFS)-evoked smooth muscle tensions in CC strips from control and diabetic rats were measured. RESULTS The neurogenic relaxation of phenylephrine (7.5 µm)-precontracted isolated CC strips was impaired in diabetic rats. Anandamide (0.3, 1 and 3 µm) enhanced the relaxant responses to EFS in diabetic CC strips in a dose-dependent manner. This effect was antagonized by the selective cannabinoid CB1 receptor antagonist AM251 (1 µm) and the selective vanilloid receptor antagonist capsazepine (3 µm). Concurrent administration of partially effective doses of l -arginine (10 µm) and anandamide (0.3 µm) exerted a synergistic improvement in EFS-induced relaxation of diabetic CC strips (P < 0.001). The relaxant responses to the NO donor, sodium nitroprusside, were similar between diabetic and control groups. CONCLUSION For the first time, we show that acute administration of anandamide, an endogenous cannabinoid, alone or combined with l -arginine can improve nitrergic nerve-mediated relaxation of the CC in diabetic rats. This effect was mediated by cannabinoid CB1 and vanilloid VR1 receptors within the CC. [source]


    Acute hypertension reveals depressor and vasodilator effects of cannabinoids in conscious rats

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2009
    W-S Vanessa Ho
    Background and purpose:, The cardiovascular effects of cannabinoids can be influenced by anaesthesia and can differ in chronic hypertension, but the extent to which they are influenced by acute hypertension in conscious animals has not been determined. Experimental approach:, We examined cardiovascular responses to intravenous administration of anandamide and the synthetic cannabinoid, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN55212-2), in conscious male Wistar rats made acutely hypertensive by infusion of angiotensin II (AII) and arginine vasopressin (AVP). Rats were chronically instrumented for measurement of arterial blood pressure and vascular conductances in the renal, mesenteric and hindquarters beds. Key results:, Anandamide dose-dependently decreased the mean arterial blood pressure of rats made hypertensive by AII-AVP infusion, but not normotensive rats. Interestingly, acute hypertension also revealed a hypotensive response to WIN55212-2, which caused hypertension in normotensive animals. The enhanced depressor effects of the cannabinoids in acute hypertension were associated with increased vasodilatation in hindquarters, renal and mesenteric vascular beds. Treatment with URB597, which inhibits anandamide degradation by fatty acid amide hydrolase, potentiated the depressor and mesenteric vasodilator responses to anandamide. Furthermore, haemodynamic responses to WIN55212-2, but not to anandamide, were attenuated by the CB1 receptor antagonist, AM251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-methyl-1H-pyrazole-3-carboxamide]. Conclusions and implications:, These results broadly support the literature showing that the cardiovascular effects of cannabinoids can be exaggerated in hypertension, but highlight the involvement of non-CB1 receptor-mediated mechanisms in the actions of anandamide. [source]


    The endocannabinoid system in brain reward processes

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2008
    M Solinas
    Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB1 receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB1 receptors by plant-derived, synthetic or endogenous CB1 receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB1 receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes. British Journal of Pharmacology (2008) 154, 369,383; doi:10.1038/bjp.2008.130; published online 14 April 2008 [source]


    Modulation of sensory neuron potassium conductances by anandamide indicates roles for metabolites

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2008
    R M Evans
    Background and purpose: The endogenous cannabinoid anandamide (AEA) acts at cannabinoid (CB1) and vanilloid (TRPV1) receptors. AEA also shows antinociceptive properties; although the underlying mechanism for this is not fully understood, both CB1 and TRPV1 may be involved. Voltage-activated Ca2+ channels in rat-cultured dorsal root ganglion (DRG) neurons are modulated by AEA. However, AEA in different populations of neurons enhanced or attenuated KCl-evoked Ca2+ influx; these effects were linked with soma size. The aim of this study was to determine how AEA or its metabolites might produce these variable responses. Experimental approach: The whole cell patch-clamp technique and fura-2 Ca2+ imaging were used to characterize the actions of AEA on action potential firing and voltage-activated K+ currents and to determine whether AEA metabolism plays any role in its effects on cultured DRG neurons. Key results: AEA attenuated multiple action potential firing evoked by 300 ms depolarizing current commands in a subpopulation of DRG neurons. Application of 1 ,M AEA attenuated voltage-activated K+ currents and the recovery of KCl-evoked Ca2+ transients. The insensitivity of these responses to the CB1 receptor antagonist rimonabant (100 nM) and preincubation of DRG neurons with pertussis toxin suggested that these actions are not CB1 receptor-mediated. Preincubating DRG neurons with the fatty acid amide hydrolase (FAAH) inhibitor phenylmethylsulphonyl fluoride (PMSF) attenuated the inhibitory actions of AEA on K+ currents and Ca2+ influx. Conclusion and implications: These data suggest that the products of AEA metabolism by FAAH contribute to the attenuation of K+ conductances and altered excitability of cultured sensory neurons. British Journal of Pharmacology (2008) 154, 480,492; doi:10.1038/bjp.2008.93; published online 31 March 2008 [source]


    Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2008
    K L Wright
    The emerging potential for the cannabinoid (CB) system in modulating gastrointestinal inflammation has gained momentum over the last few years. Traditional and anecdotal use of marijuana for gastrointestinal disorders, such as diarrhoea and abdominal cramps is recognized, but the therapeutic benefit of cannabinoids in the 21st century is overshadowed by the psychoactive problems associated with CB1 receptor activation. However, the presence and function of the CB2 receptor in the GI tract, whilst not yet well characterized, holds great promise due to its immunomodulatory roles in inflammatory systems and its lack of psychotropic effects. This review of our current knowledge of CB2 receptors in the gastrointestinal tract highlights its role in regulating abnormal motility, modulating intestinal inflammation and limiting visceral sensitivity and pain. CB2 receptors represent a braking system and a pathophysiological mechanism for the resolution of inflammation and many of its symptoms. CB2 receptor activation therefore represents a very promising therapeutic target in gastrointestinal inflammatory states where there is immune activation and motility dysfunction. British Journal of Pharmacology (2008) 153, 263,270; doi:10.1038/sj.bjp.0707486; published online 1 October 2007 [source]


    Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2007
    A J Wheal
    Background and purpose: In anaesthetized spontaneously hypertensive rats (SHR), there is evidence for up-regulation of cannabinoid (CB1) receptors: antagonism of CB1 receptors causes a rise in blood pressure, and administration of the endocannabinoid, anandamide, or inhibition of anandamide degradation causes hypotension. These findings have led to the suggestion that the endocannabinoid system may be a therapeutic target in hypertension. However, since the cardiovascular responses to cannabinoids are substantially influenced by anaesthesia, the purpose of this study was to assess regional haemodynamic responses to cannabinoid receptor stimulation and inhibition in conscious SHR. Experimental approach: Cardiovascular responses to i.v. administration of anandamide, the cannabinoid receptor agonist, WIN 55212-2, and the CB1 receptor antagonist, AM 251, were measured in male SHR, Wistar Kyoto rats and outbred Wistar rats, chronically instrumented for recording renal, mesenteric and hindquarters haemodynamics in the conscious, freely-moving state. Key results: Hypotensive responses to anandamide and WIN 55212-2 only occurred in SHR, but these were relatively modest and not associated with CB1 receptor-mediated vasodilatation. In SHR only, anandamide caused bradycardia, which was inhibited by AM 251. Furthermore, a pressor response to CB1 receptor antagonism occurred only in SHR, but was not associated with vasoconstriction. Moreover, there was some evidence for CB1 receptor-mediated vasoconstrictor actions of anandamide in SHR, which was not seen in the normotensive strains. Conclusions and implications: The results are consistent with activation of CB1 receptors in SHR by endogenous ligands exerting an antihypertensive effect, but the findings do not indicate enhanced CB1 receptor-mediated vasodilator mechanisms in SHR. British Journal of Pharmacology (2007) 152, 717,724; doi:10.1038/sj.bjp.0707410; published online 13 August 2007 [source]