| |||
cAMP Response Element-binding Protein (camp + response_element-binding_protein)
Selected AbstractsHypothermia treatment potentiates ERK1/2 activation after traumatic brain injuryEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2007Coleen M. Atkins Abstract Traumatic brain injury (TBI) results in significant hippocampal pathology and hippocampal-dependent memory loss, both of which are alleviated by hypothermia treatment. To elucidate the molecular mechanisms regulated by hypothermia after TBI, rats underwent moderate parasagittal fluid-percussion brain injury. Brain temperature was maintained at normothermic or hypothermic temperatures for 30 min prior and up to 4 h after TBI. The ipsilateral hippocampus was assayed with Western blotting. We found that hypothermia potentiated extracellular signal-regulated kinase 1/2 (ERK1/2) activation and its downstream effectors, p90 ribosomal S6 kinase (p90RSK) and the transcription factor cAMP response element-binding protein. Phosphorylation of another p90RSK substrate, Bad, also increased with hypothermia after TBI. ERK1/2 regulates mRNA translation through phosphorylation of mitogen-activated protein kinase-interacting kinase 1 (Mnk1) and the translation factor eukaryotic initiation factor 4E (eIF4E). Hypothermia also potentiated the phosphorylation of both Mnk1 and eIF4E. Augmentation of ERK1/2 activation and its downstream signalling components may be one molecular mechanism that hypothermia treatment elicits to improve functional outcome after TBI. [source] Glutamate enhances proliferation and neurogenesis in human neural progenitor cell cultures derived from the fetal cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Masatoshi Suzuki Abstract Excitatory amino acids such as glutamate play important roles in the central nervous system. We previously demonstrated that a neurosteroid, dehydroepiandrosterone (DHEA), has powerful effects on the cell proliferation of human neural progenitor cells (hNPC) derived from the fetal cortex, and this effect is modulated through NMDA receptor signaling. Here, we show that glutamate can significantly increase the proliferation rates of hNPC. The increased proliferation could be blocked by specific NMDA receptor antagonists, but not other glutamate antagonists for kainate,AMPA or metabotropic receptors. The NR1 subunit of the NMDA receptor was detectable in elongated bipolar or unipolar cells with small cell bodies. These NR1-positive cells were colocalized with GFAP immunoreactivity. Detection of the phosphorylation of cAMP response element-binding protein (pCREB) revealed that a subset of NR1-positive hNPC could respond to glutamate. Furthermore, we hypothesized that glutamate treatment may affect mainly the hNPC with a radial morphology and found that glutamate as well as DHEA selectively affected elongated hNPC; these elongated cells may be a type of radial glial cell. Finally we asked whether the glutamate-responsive hNPC had an increased potential for neurogenesis and found that glutamate-treated hNPC produced significantly more neurons following differentiation. Together these data suggest that glutamate stimulates the division of human progenitor cells with neurogenic potential. [source] Two-way active avoidance training-specific increases in phosphorylated cAMP response element-binding protein in the dorsal hippocampus, amygdala, and hypothalamusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005Subhash Saha Abstract Previous studies have demonstrated that the activation of pontine-wave (P-wave) generating cells in the brainstem during post-training rapid eye movement (REM) sleep is critical for the consolidation of memory for two-way active avoidance (TWAA) learning in the rat. Here, using immunocytochemistry, we investigated the spatio-temporal distribution of CREB phosphorylation within different parts of the dorsal hippocampus, amygdala, and hypothalamus following a session of TWAA training in the rat. We show that the TWAA training trials increased phosphorylation of CREB (p-CREB) in the dorsal hippocampus, amygdala, amygdalo-hippocampal junction (AHi), and hypothalamus. However, the time intervals leading to training-induced p-CREB activity were different for different regions of the brain. In the dorsal hippocampus, p-CREB activity was maximal at 90 min and this activity disappeared by 180 min. In the AHi, activity of the p-CREB peaked by 180 min and disappeared by 360 min. In the amygdala, the p-CREB activity peaked at 180 min and still remained higher than the control at the 360 min interval. In the hypothalamus, at 90 min p-CREB activity was present only in the ventromedial hypothalamus; however, by 180 min this p-CREB activity was also present in the dorsal hypothalamus, perifornical area, and lateral hypothalamus. By 360 min, p-CREB activity disappeared from the hypothalamus. This TWAA training trials-induced spatiotemporal characteristic of CREB phosphorylation, for the first time, suggests that REM sleep P-wave generator activation-dependent memory processing involves different parts of the dorsal hippocampus, amygdala, and hypothalamus. [source] Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000G. Rammes Abstract Electrophysiological and behavioural experiments were performed in transgenic mice expressing a dominant-negative form of cAMP response element-binding protein (CREBA133) in the limbic system. In control littermate in vitro slice preparation, tetanizing the lateral amygdala,basolateral amygdala (BLA) pathway with a single train (100 Hz for 1 s) produced short-term potentiation (STP) in the BLA. Five trains (10-s interstimulus interval) induced long-term potentiation (LTP), which was completely blocked by the N-methyl- d -aspartate (NMDA) receptor antagonist d(,)-2-amino-5-phosphonopentanoic acid (AP5; 50 ,m). When GABAergic (,-aminobutyric acid) inhibition was blocked by picrotoxin (10 ,m), LTP became more pronounced. Low-frequency stimulation (1 Hz for 15 min) induced either long-term depression (LTD) or depotentiation. LTD remained unaffected by AP5 (50 ,m) or by the L- and T-type Ca2+ -channel blockers nifedipine (20 ,m) and Ni2+ (50 ,m), but was prevented by picrotoxin (10 ,m), indicating a GABAergic link in the expression of LTD in the BLA. When conditioned fear was tested, a mild impairment was seen in one of three transgenic lines only. Although high levels of mRNA encoding CREBA133 lead to downregulation of endogenous CREB, expression of LTP and depotentiation were unaltered in BLA of these transgenic animals. These results could suggest that residual CREB activity was still present or that CREB per se is dispensable. Alternatively, other CREB-like proteins were able to compensate for impaired CREB function. [source] Transcriptional upregulation of inflammatory cytokines in human intestinal epithelial cells following Vibrio cholerae infectionFEBS JOURNAL, Issue 17 2007Arunava Bandyopadhaya Coordinated expression and upregulation of interleukin-1,, interleukin-1,, tumor necrosis factor-,, interleukin-6, granulocyte,macrophage colony-stimulating factor, interleukin-8, monocyte chemotactic protein-1 (MCP-1) and epithelial cell derived neutrophil activator-78, with chemoattractant and proinflammatory properties of various cytokine families, were obtained in the intestinal epithelial cell line Int407 upon Vibrio cholerae infection. These proinflammatory cytokines also showed increased expression in T84 cells, except for interleukin-6, whereas a striking dissimilarity in cytokine expression was observed in Caco-2 cells. Gene expression studies of MCP-1, granulocyte,macrophage colony-stimulating factor, interleukin-1,, interleukin-6 and the anti-inflammatory cytokine transforming growth factor-, in Int407 cells with V. cholerae culture supernatant, cholera toxin, lipopolysaccharide and ctxA mutant demonstrated that, apart from cholera toxin and lipopolysaccharide, V. cholerae culture supernatant harbors strong inducer(s) of interleukin-6 and MCP-1 and moderate inducer(s) of interleukin-1, and granulocyte,macrophage colony-stimulating factor. Cholera toxin- or lipopolysaccharide-induced cytokine expression is facilitated by activation of nuclear factor-,B (p65 and p50) and cAMP response element-binding protein in Int407 cells. Studies with ctxA mutants of V. cholerae revealed that the mutant activates the p65 subunit of nuclear factor-,B and cAMP response element-binding protein, and as such the activation is mediated by cholera toxin-independent factors as well. We conclude that V. cholerae elicits a proinflammatory response in Int407 cells that is mediated by activation of nuclear factor-,B and cAMP response element-binding protein by cholera toxin, lipopolysaccharide and/or other secreted products of V. cholerae. [source] Transforming growth factor-,2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neuronsHIPPOCAMPUS, Issue 1 2007Teruyuki Fukushima Abstract Transforming growth factor-,s (TGF-,s) are widely expressed and play roles as multifunctional growth factors and regulators of key events in development, disease, and repair. However, it is not known whether TGF-,s affect the plasticity of hippocampal neurons. As a first step to address this issue, we examined whether TGF-,2 modulated the electrophysiological and biochemical properties of cultured hippocampal neurons. We found that prolonged 24 h treatment with TGF-,2 induced facilitation of evoked postsynaptic currents (ePSCs). This facilitation was associated with a decrease in short-term synaptic depression of ePSCs and increases in both the amplitude and frequency of spontaneous miniature postsynaptic currents (mPSCs). The long-term changes of ePSCs and mPSCs may be associated with cAMP response element-binding protein (CREB), which has been previously implicated in long-term potentiation. Immunofluorescence techniques and Western blot analysis both revealed that TGF-,2 enhanced the phosphorylation of CREB. Together, these results suggest that TGF-,2 may play a role in the cascade of events underlying long-term synaptic facilitation in hippocampus, and that CREB may be an important mediator of these effects. © 2006 Wiley-Liss, Inc. [source] Detection of novelty, but not memory of spatial habituation, is associated with an increase in phosphorylated cAMP response element-binding protein levels in the hippocampusHIPPOCAMPUS, Issue 1 2004Milena Winograd Abstract There is a growing body of evidence showing that the formation of associative memories is associated with an increase in phosphorylated cAMP response element-binding protein (pCREB) levels. We recently reported increased pCREB levels in the rat hippocampus after an exploration to a novel environment. In the present work, we studied whether this increment in CREB activation is associated with the formation of memory of habituation to a novel environment or with the detection of novelty. Rats were submitted to consecutive open field sessions at 3-h intervals. Measurement of the hippocampal pCREB level, carried out 1 h after each training session, showed that (1) it did not increase when rats explored a familiar environment; (2) it did not increase after a reexposure that improves the memory of habituation; (3) it increased after a brief novel exploration unable to form memory of habituation; and (4) it increased in amnesic rats for spatial habituation. Taken as a whole, our results suggest that the elevated pCREB level after a single open field exploration is not associated with the memory formation of habituation. It is indeed associated with the detection of a novel environment. © 2003 Wiley-Liss, Inc. [source] Methylseleninic acid enhances the effect of etoposide to inhibit prostate cancer growth in vivoINTERNATIONAL JOURNAL OF CANCER, Issue 6 2007Oscar Gonzalez-Moreno Abstract New therapeutic agents are needed for the treatment of androgen-independent prostate cancer (PrCa). We have investigated the effect of methylseleninic acid (MSA) on tumor stage-specific prostate cells derived from the C3 (1)/Tag model for PrCa: Pr111, a slow-growing and nontumorigenic cell line isolated from a prostate intraepithelial neoplasia lesion; Pr14, a tumorigenic line derived from a primary tumor; and Pr14C1, a sub-clone of Pr14 explanted from a lung metastasis. We demonstrate that MSA strongly inhibits cell growth and induces apoptosis in C3 (1)/Tag tumor cells, in a dose-dependent manner. A decrease in phosphorylated ERK1/2 and AKT was also found in tumor cells, but not in Pr111. Microarray analysis using affymetrix showed that the number of genes with an altered expression in tumor cells is significantly higher (p < 0.01) than in nontumoral cells. Pathways analyses revealed a decrease in the expression of genes involved in metabolism (Fabp5, Cyba), signal transduction (ERK, AKT), angiogenesis (neuropilin-1, Flt-4) and transcription (cAMP response element-binding protein) in tumor cells. The expression of neuropilin-1, a protein involved in VEGF signaling and tumor angiogenesis, was 97-fold repressed in Pr14 cells treated with MSA. Combination treatments using low doses of etoposide or taxotere (docetaxel), plus low doses of MSA revealed a strong enhancement of cell growth inhibition and apoptosis in tumor cells. Our in vivo studies using Pr14 cells xenografted into nude mice demonstrated that MSA significantly enhances the chemotherapeutical effect of etoposide, resulting in 78.3% tumor growth inhibition. These results suggest that MSA could be used against PrCa to enhance the effect of etoposide. © 2007 Wiley-Liss, Inc. [source] Dominant-negative CREB inhibits heparanase functionality and melanoma cell invasionJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004Rebecca Aucoin Abstract Heparanase (HPSE-1) is an endo-,- d -glucuronidase involved in the degradation of cell-surface/extracellular matrix heparan sulfate (HS) in normal and neoplastic tissues. HPSE-1 represents the first example of purification and cloning of a mammalian HS-degradative enzyme. Elevated HPSE-1 levels are known to be associated with metastatic cancers, directly implicating HPSE-1 in metastatic events. The purpose of this study was to determine the role of cAMP response element-binding protein (CREB) in modulating HPSE-1-mediated effects on human melanoma cell invasion. Highly invasive, brain-metastatic melanoma cells (70W) were transfected with the dominant-negative CREB (KCREB) and subsequently analyzed for changes in their HPSE-1 content, functionality, and cell invasive properties. KCREB-transfected cells showed a decrease in HPSE-1 mRNA expression and activity. This correlated with a significantly decreased invasion of these cells through MatrigelÔ-coated filters. Furthermore, adenoviral vectors containing the full-length human HPSE-1 cDNA in sense orientation (Ad-S/hep) were constructed to investigate CREB effects on HPSE-1. Restoration of HPSE-1 expression and functionality following Ad-S/hep infection of KCREB-transfected 70W cells recovered melanoma cell invasiveness. These results demonstrate that KCREB inhibits HPSE-1 and suggest that one of the roles CREB plays in the acquisition of melanoma cells metastatic phenotype is affecting HPSE-1 activity. © 2004 Wiley-Liss, Inc. [source] Modulation of Aanat gene transcription in the rat pineal glandJOURNAL OF NEUROCHEMISTRY, Issue 2 2010Anthony K. Ho Abstract The main function of the rat pineal gland is to transform the circadian rhythm generated in the suprachiasmatic nucleus into a rhythmic signal of circulating melatonin characterized by a large nocturnal increase that closely reflects the duration of night period. This is achieved through the tight coupling between environmental lighting and the expression of arylalkylamine- N -acetyltransferase, the rhythm-controlling enzyme in melatonin synthesis. The initiation of Aanat transcription at night is controlled largely by the norepinephrine-stimulated phosphorylation of cAMP response element-binding protein by protein kinase A. However, to accurately reflect the duration of darkness, additional signaling mechanisms also participate to fine-tune the temporal profile of adrenergic-induced Aanat transcription. Here, we reviewed some of these signaling mechanisms, with emphasis on the more recent findings. These signaling mechanisms can be divided into two groups: those involving modification of constitutively expressed proteins and those requiring synthesis of new proteins. This review highlights the pineal gland as an excellent model system for studying neurotransmitter-regulated rhythmic gene expression. [source] Protective Effect of Total Flavones of Abelmoschus manihot L. Medic Against Poststroke Depression Injury in Mice and Its Action MechanismTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2009Mei Liu Abstract Total flavones of Abelmoschus manihot L. Medic (TFA) is the major active component isolated from the traditional Chinese herb Abelmoschus manihot L. Medic. We investigated the protective effect of TFA against poststroke depression (PSD) injury in mice and its action mechanism. A mouse model of PSD was induced by middle cerebral artery occlusion (MACO) 30 min/reperfusion, followed by isolation feeding and chronic unpredictable mild stress for 2 weeks. Treatment groups received TFA at three different doses (160, 80, and 40 mg/kg, p.o.) or fluoxetine (Flu, 2.5 mg/kg, p.o.) daily for 24 days. Change in behavior, brain tissue malondialdehyde (MDA) levels, and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured. The expression of brain-derived neurotrophic factor (BDNF) was detected by immunohistochemistry, and mRNA expression of BDNF and cAMP response element-binding protein (CREB) analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Treatment with TFA (160, 80, and 40 mg/kg) significantly ameliorated mice escape-directed behavioral impairment induced by PSD, markedly reduced MDA levels, and increased the activity of SOD, GSH-Px close to normal levels. TFA administration also attenuated PSD-induced neuronal death/losses, upregulated expression of BDNF both at mRNA and protein levels, as well as CREB mRNA levels. TFA had a protective effect against PSD injury in mice. Cardioprotection involves the inhibition of lipid peroxidation and upregulation of BDNF-CREB levels in the hippocampus, which may also be important mechanism of its antidepressants. This potential protection makes TFA a promising therapeutic agent for the PSD. Anat Rec, 292:412,422, 2009. © 2009 Wiley-Liss, Inc. [source] |