Calvarial Bone Defects (calvarial + bone_defect)

Distribution by Scientific Domains


Selected Abstracts


Stimulation of intramembranous bone repair in rats by ghrelin

EXPERIMENTAL PHYSIOLOGY, Issue 7 2008
Feilong Deng
Researchers in our laboratory have previously shown that ghrelin, a gastric peptide hormone, may regulate mesenchymal cell differentiation into adipocytes and myocytes. Here we show that ghrelin promotes osteogenesis of intramembranous bone and improves the repair of calvarial bone defects in rats. Rats with a 9 mm full-thickness calvarial bone defect received either Bio-Oss® (control group) or Bio-Oss® mixed with 20 ,g ghrelin (treatment group), followed by local administration of saline or ghrelin (10 ,g), respectively, on days 5, 10 and 15. After 6 and 12 weeks, new bone formation was assessed. Animals treated with ghrelin showed a significant increase in new bone formation as demonstrated by an increment in bone mineral density and fluorescence labelling of tetracycline relative to the control group. At 6 weeks, bone mineral density increased from 54 ± 7 (control group) to 78 ± 9 mg cm,2 in the treatment group, while the tetracycline fluorescence labelling increased by 61 ± 15%. A similar increment was observed at 12 weeks. Quantitative reverse transcriptase-polymerase chain reaction showed that expression of alkaline phosphatase (ALP), osteocalcin and collagen type I was elevated. Relative to the control animals, mRNAs for ALP, osteocalcin and collagen type I increased 2.4 ± 0.4-, 4.7 ± 1.9- and 4.0 ± 1.7-fold, respectively, in animals treated with ghrelin for 6 weeks (P < 0.05). At 12 weeks, mRNA levels of ALP, osteocalcin and collagen type I showed a decline relative to levels at 6 weeks but still remained significantly higher than in the control group, with fold changes of 2.4 ± 0.8, 2.4 ± 1.2 and 2.1 ± 0.7, respectively (P < 0.05). This study demonstrated that ghrelin stimulates intramembranous osteogenesis. [source]


Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2006
U. Kneser
Abstract Introduction: Biologic bone substitutes may offer alternatives to bone grafting procedures. The aim of this study was to evaluate a preformed bone substitute based on processed bovine cancellous bone (PBCB) with or without osteogenic cells in a critical size calvarial defect rat model. Methods: Discs of PBCB (Tutobone®) were seeded with second passage fibrin gel-immobilized syngenic osteoblasts (group A, n = 40). Cell-free matrices (group B, n = 28) and untreated defects (group C; n=28) served as controls. Specimens were explanted between day 0 and 4 months after implantation and were subjected to histological and morphometric evaluation. Results: At 1 month, bone formation was limited to small peripheral areas. At 2 and 4 months, significant bone formation, matrix resorption as well as integration of the implants was evident in groups A and B. In group C no significant regeneration of the defects was observed. Morphometric analysis did not disclose differences in bone formation in matrices from groups A and B. Carboxyfluorescine-Diacetate-Succinimidylester (CFDA) labeling demonstrated low survival rates of transplanted cells. Discussion: Osteoblasts seeded into PBCB matrix display a differentiated phenotype following a 14 days cell culture period. Lack of initial vascularization may explain the absence of added osteogenicity in constructs from group A in comparison to group B. PBCB is well integrated and represents even without osteogenic cells a promising biomaterial for reconstruction of critical size calvarial bone defects. [source]


Healing patterns in calvarial bone defects following guided bone regeneration in rats

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 9 2002
A micro-CT scan analysis
Abstract Objective: The objective of this study was to evaluate healing patterns of critical-size calvarial bone defects treated according to principles of guided bone regeneration using micro-CT scan analysis. Specifically, the contribution of bone, periosteum and dura mater to the amount and mineralization of newly formed bone was evaluated. Material and Methods: Surgically induced, critical-size calvarial bone defects in 48 adult male Wistar rats received the following: an occlusive expanded polytetrafluoroethylene (ePTFE) membrane at the exo- and endocranial aspect (OO; n = 12); an occlusive membrane at the exocranial and a perforated membrane at the endocranial aspect (OP; n = 12); a perforated membrane at the exocranial and an occlusive membrane at the endocranial aspect (PO; n = 12); and a perforated membrane at the exo- and endocranial aspect (PP; n = 12). The animals were euthanized at 4 weeks for quantitative analysis of bone volume fraction and mineralization in the region of interest (ROI) as well as in the external, middle and central area of the defect using micro-CT. Results: Bone volume fraction ranged from 31.4% (OP) to 24.5% (PP). No differences were found among the groups. Bone volume fraction and mineralization in the middle area were significantly greater in group OP than in group PP, and in the central area in group OO and PO than in group PP. Conclusions: The results of this study suggest that use of occlusive ePTFE membranes enhances bone formation and maturation in the calvarial skeleton. When occlusion of endo- and exocranial tissues was compromised by membrane perforation, impaired bone formation and mineralization were observed. [source]


Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure

CLINICAL ORAL IMPLANTS RESEARCH, Issue 3 2010
Jin-Woo Park
Abstract Objectives: This study investigated the efficacy of new bone graft substitutes , biphasic calcium phosphates (BCP) made of submicron-sized grains with fully interconnected wide-range micron-scale pores in two different macrodesigns: donut shaped with a 300,400 ,m central macropore (n-BCP-1) or rod-shaped (n-BCP-2) , in the healing of rabbit calvarial defects, and compared their bone-healing properties with those of various commercial bone substitutes, which included substitutes with similar BCP composition (MBCP and Osteon), anorganic bovine bone (Bio-Oss), and ,-TCP (Cerasorb). Material and methods: The surface morphology of the bone substitutes was investigated using scanning electron microscopy (SEM). Defects 8 mm in diameter were created in the calvaria of 30 adult male New Zealand White rabbits and were filled with six types of bone substitutes. The percentage of newly formed bone (NB%) was evaluated histomorphometrically 4 and 8 weeks after implantation. Results: SEM observation showed submicron-sized grains with fully interconnected micropore structures in the n-BCP-1 and n-BCP-2 groups; these groups also showed considerable new bone formation in inner micropores as well as on the outer surfaces. The n-BCP-1 group exhibited enhanced new bone formation and direct ingrowth of bone tissue with blood vessels into central pores. Histomorphometric analysis showed significantly greater NB% in the n-BCP-1 group when compared with the other groups at 4 and 8 weeks (P<0.05). Conclusion: A new BCP ceramics made of submicron-sized grains with a hierarchical pore structure was an effective osteoconductive material for the treatment of osseous defects of rabbit calvaria. To cite this article: Park J-W, Kim E-S, Jang J-H, Suh J-Y, Park K-B, Hanawa T. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin. Oral Impl. Res. 21, 2010; 268,276. doi: 10.1111/j.1600-0501.2009.01846.x [source]