| |||
Calpain Activity (calpain + activity)
Selected AbstractsEndothelial Cell Calpain Activity Facilitates Lymphocyte DiapedesisAMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2005Amer M. Hussain Lymphocyte infiltration of tissue is a cardinal feature of solid-organ allograft rejection. Vascular endothelial cells (EC) participate in lymphocyte recruitment through the display of adhesion molecules and chemokines to promote leukocyte extravasation. Moreover, EC reorganize the cytoskeleton and cytoskeleton-associated structures during leukocyte diapedesis. We examined the role of EC (Ca+2)i and the calcium-sensitive protease, calpain, during lymphocyte diapedesis through a human EC monolayer under physiologic shear stress in vitro. We observed that lymphocyte transendothelial migration (TEM) was inhibited by chelating EC cytosolic calcium, or depleting EC endoplasmic reticulum calcium stores by inhibition of the endoplasmic reticulum Ca ATPase. Further, inhibition of EC phospholiase C also decreased lymphocyte TEM. We determined that EC constitutively exhibit calpain activity, using fluorescence generation from a calpain substrate to report calpain activity in individual live cells. Moreover, EC adjacent to a transmigrating lymphocyte showed increased calpain activity. Further, lymphocyte TEM was inhibited by agents that block calpain activity. Inhibition of lymphocyte TEM occurs at the lumenal EC surface and correlates with impaired development of intercellular adhesion molecule 1 (ICAM-1)-rich docking structures by the EC. We conclude EC calcium and calpain activity facilitates lymphocyte TEM, and participates in the assembly of the docking structure. [source] Novel glycosaminoglycan mimetic (RGTA, RGD120) contributes to enhance skeletal muscle satellite cell fusion by increasing intracellular Ca2+ and calpain activityJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2005M. Zimowska Glycosaminoglycans (GAG) are classes of molecules that play an important role in cellular processes. The use of GAG mimetics called regenerating agent (RGTA) represents a tool to investigate the effect of GAG moiety on cellular behavior. A first member of the RGTA family (RG1192), a dextran polymers with defined amounts of sulfate, carboxymethyl, as well as hydrophobic groups (benzylamide), was shown to stimulate skeletal muscle repair after damage and myoblast differentiation. To obtain a comprehensive insight into the mechanism of action of GAG mimetics, we investigated the effect on myoblast differentiation of a novel RGTA, named RGD120, which was devoid of hydrophobic substitution and had ionic charge similar to heparin. Myoblasts isolated from adult rat skeletal muscles and grown in primary cultures were used in this study. We found that chronic treatment with RGD120 increased the growth of adult myoblasts and induced their precocious fusion into myotubes in vitro. It also partially overcame the inhibitory effect of the calpain inhibitor N -acetyl-leu-leu-norleucinal (ALLN) on these events. Western blot and zymography analyses revealed that milli calpain was slightly increased by RGD120 chronic treatment. In addition, using fluorescent probes (Indo-1 and Boc-leu-met-MAC), we demonstrated that RGD120 added to prefusing myoblast cultures accelerates myoblast fusion into myotubes, induced an increase of cytosolic free calcium concentration, and concomitantly an increase of intracellular calpain protease activity. Altogether, these results suggested that the efficiency of RGD120 in stimulating myogenesis might be in part explained through its effect on calcium mobilization as well as on the calpain amount and activity. © 2005 Wiley-Liss, Inc. [source] Identification and characterization of PEBP as a calpain substrateJOURNAL OF NEUROCHEMISTRY, Issue 4 2006Qinghua Chen Abstract Calpains are calcium- and thiol-dependent proteases whose dysregulation has been implicated in a number of diseases and conditions such as cardiovascular dysfunction, ischemic stroke, and Alzheimer's disease (AD). While the effects of calpain activity are evident, the precise mechanism(s) by which dysregulated calpain activity results in cellular degeneration are less clear. In order to determine the impact of calpain activity, there is a need to identify the range of specific calpain substrates. Using an in vitro proteomics approach we confirmed that phosphatidylethanolamine-binding protein (PEBP) as a novel in vitro and in situ calpain substrate. We also observed PEBP proteolysis in a model of brain injury in which calpain is clearly activated. In addition, with evidence of calpain dysregulation in AD, we quantitated protein levels of PEBP in postmortem brain samples from the hippocampus of AD and age-matched controls and found that PEBP levels were approximately 20% greater in AD. Finally, with previous evidence that PEBP may act as a serine protease inhibitor, we tested PEBP as an inhibitor of the proteasome and found that PEBP inhibited the chymostrypsin-like activity of the proteasome by ,30%. Together these data identify PEBP as a potential in vivo calpain substrate and indicate that increased PEBP levels may contribute to impaired proteasome function. [source] Endothelial Cell Calpain Activity Facilitates Lymphocyte DiapedesisAMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2005Amer M. Hussain Lymphocyte infiltration of tissue is a cardinal feature of solid-organ allograft rejection. Vascular endothelial cells (EC) participate in lymphocyte recruitment through the display of adhesion molecules and chemokines to promote leukocyte extravasation. Moreover, EC reorganize the cytoskeleton and cytoskeleton-associated structures during leukocyte diapedesis. We examined the role of EC (Ca+2)i and the calcium-sensitive protease, calpain, during lymphocyte diapedesis through a human EC monolayer under physiologic shear stress in vitro. We observed that lymphocyte transendothelial migration (TEM) was inhibited by chelating EC cytosolic calcium, or depleting EC endoplasmic reticulum calcium stores by inhibition of the endoplasmic reticulum Ca ATPase. Further, inhibition of EC phospholiase C also decreased lymphocyte TEM. We determined that EC constitutively exhibit calpain activity, using fluorescence generation from a calpain substrate to report calpain activity in individual live cells. Moreover, EC adjacent to a transmigrating lymphocyte showed increased calpain activity. Further, lymphocyte TEM was inhibited by agents that block calpain activity. Inhibition of lymphocyte TEM occurs at the lumenal EC surface and correlates with impaired development of intercellular adhesion molecule 1 (ICAM-1)-rich docking structures by the EC. We conclude EC calcium and calpain activity facilitates lymphocyte TEM, and participates in the assembly of the docking structure. [source] |