Calpain Activation (calpain + activation)

Distribution by Scientific Domains


Selected Abstracts


Interaction between catalytically inactive calpain and calpastatin

FEBS JOURNAL, Issue 8 2006
Evidence for its occurrence in stimulated cells
Conformational changes in the calpain molecule following interaction with natural ligands can be monitored by the binding of a specific monoclonal antibody directed against the catalytic domain of the protease. None of these conformational states showed catalytic activity and probably represent intermediate forms preceding the active enzyme state. In its native inactive conformation, calpain shows very low affinity for this monoclonal antibody, whereas, on binding to the ligands Ca2+, substrate or calpastatin, the affinity increases up to 10-fold, with calpastatin being the most effective. This methodology was also used to show that calpain undergoes similar conformational changes in intact cells exposed to stimuli that induce either a rise in intracellular [Ca2+] or extensive diffusion of calpastatin into the cytosol without affecting Ca2+ homeostasis. The fact that the changes in the calpain state are also observed under the latter conditions indicates that calpastatin availability in the cytosol is the triggering event for calpain,calpastatin interaction, which is presumably involved in the control of the extent of calpain activation through translocation to specific sites of action. [source]


Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates

HIPPOCAMPUS, Issue 7 2003
Tetsumori Yamashima
Abstract Because of the paucity of primate experimental models, the precise molecular mechanism of ischemic neuronal death remains unknown in humans. This study focused on nonhuman primates to determine which cascade necrosis or apoptosis is predominantly involved in the development of delayed (day 5) neuronal death in the hippocampal CA1 sector undergoing 20 min ischemia. We investigated expression, activation, and/or translocation of ,-calpain, lysosome-associated membrane protein-1 (LAMP-1), caspase-3, and caspase-activated DNase (CAD), as well as morphology of the postischemic CA1 neurons and DNA electrophoresis pattern. Immunoblotting showed sustained (immediately after ischemia until day 5) and maximal (day 3) activation of ,-calpain. The immunoreactivity of activated ,-calpain became remarkable as coarse granules at lysosomes on day 2, while it translocated throughout the perikarya on day 3. The immunoreactivity of LAMP-1 also showed a dynamic and concomitant translocation that was maximal on days 2,3, indicating calpain-mediated disruption of the lysosomal membrane after ischemia. In contrast, immunoblotting demonstrated essentially no increase in the activated caspase-3 at any time points after ischemia, despite upregulation of pro-caspase-3. Although expression of CAD was slightly upregulated on day 1 or 2, or both, it was much less compared with lymph node or intestine tissues. Furthermore, light and electron microscopy showed eosinophilic coagulation necrosis and membrane disruption without apoptotic body formation, while DNA electrophoresis did not show a ladder pattern, but rather a smear pattern. Sustained calpain activation and the resultant lysosomal rupture, rather than CAD-mediated apoptosis, may cause ischemic neuronal necrosis in primates. © 2003 Wiley-Liss, Inc. [source]


Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2009
Heike Weber
Summary The cytosolic cysteine protease calpain is implicated in a multitude of cellular functions but also plays a role in cell damage. Our previous results suggest that an activation of calpain accompanied by a decrease in its endogenous inhibitor calpastatin may contribute to pancreatic damage during cerulein-induced acute pancreatitis. The present study aimed at the time course of secretagogue-induced calpain activation and cellular substrates of the protease. Isolated rat pancreatic acini were incubated with a supramaximal concentration of cholecystokinin (0.1 ,M CCK) for 30 min in the presence or absence of the calpain inhibitor Z-Val-Phe methyl ester (100 ,M ZVP). The activation of calpain and the expression of calpastatin and the actin cytoskeleton-associated proteins ,II-spectrin, E-cadherin and vinculin were studied by immunoblotting. The cell damage was assessed by lactate dehydrogenase release and ultrastructural analysis including fluorescence-labelled actin filaments. Immediately after administration, CCK led to activation of both calpain isoforms, ,- and m-calpain. The protease activation was accompanied by a decrease in the E-cadherin level and formation of calpain-specific breakdown products of ,II-spectrin. A calpain-specific cleavage product of vinculin appeared concomitantly with changes in the actin filament organization. No effect of CCK on calpastatin was found. Inhibition of calpain by ZVP reduced CCK-induced damage of the actin-associated proteins and the cellular ultrastructure including the actin cytoskeleton. The results suggest that CCK-induced acinar cell damage requires activation of calpain and that the actin cytoskeleton belongs to the cellular targets of the protease. [source]


Neurodegeneration in an A,-induced model of Alzheimer's disease: the role of Cdk5

AGING CELL, Issue 1 2010
Joao P. Lopes
Summary Cdk5 dysregulation is a major event in the neurodegenerative process of Alzheimer's disease (AD). In vitro studies using differentiated neurons exposed to A, exhibit Cdk5-mediated tau hyperphosphorylation, cell cycle re-entry and neuronal loss. In this study we aimed to determine the role of Cdk5 in neuronal injury occurring in an AD mouse model obtained through the intracerebroventricular (icv) injection of the A,1,40 synthetic peptide. In mice icv-injected with A,, Cdk5 activator p35 is cleaved by calpains, leading to p25 formation and Cdk5 overactivation. Subsequently, there was an increase in tau hyperphosphorylation, as well as decreased levels of synaptic markers. Cell cycle reactivation and a significant neuronal loss were also observed. These neurotoxic events in A,-injected mice were prevented by blocking calpain activation with MDL28170, which was administered intraperitoneally (ip). As MDL prevents p35 cleavage and subsequent Cdk5 overactivation, it is likely that this kinase is involved in tau hyperphosphorylation, cell cycle re-entry, synaptic loss and neuronal death triggered by A,. Altogether, these data demonstrate that Cdk5 plays a pivotal role in tau phosphorylation, cell cycle induction, synaptotoxicity, and apoptotic death in postmitotic neurons exposed to A, peptides in vivo, acting as a link between diverse neurotoxic pathways of AD. [source]


EFFECT OF FROZEN TEMPERATURE AND STORAGE TIME ON CALPAINS, CATHEPSINS (B, B + L, H AND D) AND THEIR ENDOGENOUS INHIBITORS IN GOAT MUSCLES

JOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2006
N.S. NAGARAJ
ABSTRACT The effects of frozen storage on the biochemical properties of myofibrils, muscle proteinases (cathepsins and calpains) and their endogenous inhibitors were investigated. Longissimus dorsi, biceps femoris, semimembranosus and semitendinosus muscles from goat were frozen (,15C) and studied up to 120 days. The results showed that the percentage change in sarcomere length was 8.4,13.1. The calpain activity was determined after separation on a diethylaminoethyl,Sephacel column (Sigma, St. Louis, MO). Significantly greater percentage of calpain II activity was recovered when compared to calpain I. There was a 15,25% loss in calpastatin inhibitory activity, and the cystatin level fell by 11,16% after 80 days. Cathepsin B, B + L, H and D were very stable when compared to calpains. The calcium concentration may also be the factor for calpain activation. The sodium dodecyl sulfate,polyacrylamide gel electrophoresis result showed the appearance of 55 kDa components. It was concluded that calpains, not cathepsins, play an important role in the proteolysis of myofibrillar proteins at the freezing temperature. [source]


Complement component C1q inhibits ,-amyloid- and serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms

JOURNAL OF NEUROCHEMISTRY, Issue 3 2008
Karntipa Pisalyaput
Abstract Alzheimer's disease is a neurodegenerative disorder characterized by neuronal loss, ,-amyloid (A,) plaques, and neurofibrillary tangles. Complement protein C1q has been found associated with fibrillar A, deposits, however the exact contributions of C1q to Alzheimer's disease is still unknown. There is evidence that C1q, as an initiator of the inflammatory complement cascade, may accelerate disease progression. However, neuronal C1q synthesis is induced after injury/infection suggesting that it may be a beneficial response to injury. In this study, we report that C1q enhances the viability of neurons in culture and protects neurons against A,- and serum amyloid P (SAP)-induced neurotoxicity. Investigation of potential signaling pathways indicates that caspase and calpain are activated by A,, but C1q had no effect on either of these pathways. Interestingly, SAP did not induce caspase and calpain activation, suggesting that C1q neuroprotection is in distinct from caspase and calpain pathways. In contrast to A,- and SAP-induced neurotoxicity, neurotoxicity induced by etoposide or FCCP was unaffected by the addition of C1q, indicating pathway selectivity for C1q neuroprotection. These data support a neuroprotective role for C1q which should be further investigated to uncover mechanisms which may be therapeutically targeted to slow neurodegeneration via direct inhibition of neuronal loss. [source]


Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia

JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
Michel Ferrand-Drake
Abstract Blockade of mitochondrial permeability transition protects against hypoglycemic brain damage. To study the mechanisms downstream from mitochondria that may cause neuronal death, we investigated the effects of cyclosporin A on subcellular localization of apoptosis-inducing factor and cytochrome c, activation of the cysteine proteases calpain and caspase-3, as well as its effect on brain extracellular calcium concentrations. Redistribution of cytochrome c occurred at 30 min of iso-electricity, whereas translocation of apoptosis-inducing factor to nuclei occurred at 30 min of recovery following 30 min of iso-electricity. Active caspase-3 and calpain-induced fodrin breakdown products were barely detectable in the dentate gyrus and CA1 region of the hippocampus of rat brain exposed to 30 or 60 min of insulin-induced hypoglycemia. However, 30 min or 3 h after recovery of blood glucose levels, fodrin breakdown products and active caspase-3 markedly increased, concomitant with a twofold increase in caspase-3-like enzymatic activity. When rats were treated with neuroprotective doses of cyclosporin A, but not with FK 506, the redistribution of apoptosis-inducing factor and cytochrome c was reduced and fodrin breakdown products and active caspase-3 immuno-reactivity was diminished whereas the extracellular calcium concentration was unaffected. We conclude that hypoglycemia leads to mitochondrial permeability transition which, upon recovery of energy metabolism, mediates the activation of caspase-3 and calpains, promoting cell death. [source]


Calpain-mediated degradation of G-substrate plays a critical role in retinal excitotoxicity for amacrine cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2009
Toru Nakazawa
Abstract The role of neuronal N-methyl-D-aspartate (NMDA) receptor-mediated intracellular signaling has been elucidated in both physiological and pathological conditions. However, the details of relative vulnerability for excitotoxicity remain unknown. Retinal excitotoxicity is involved in various diseases leading to irreversible blindness. Here, we used the visual system and explored the mechanistic details of the NMDA-elicited intracellular events, especially in the amacrine cells, which are the most vulnerable type of neuron in the retina. G-substrate, a specific substrate of cyclic guanosine 3,,5,-monophosphate (cGMP)-dependent protein kinase, is colocalized with amacrine cells and acts as an endogenous inhibitor of protein phosphatase. To elucidate how G-substrate was involved in NMDA-induced amacrine cell death, the immunohistochemical analysis with G-substrate antibody was performed following NMDA injury. In vivo, NMDA immediately decreased G-substrate immunoreactivity, and the suppression of calpain activation using ALLN or calpain III, an inhibitor of calpain, blocked this decrease. In vitro, degraded fragments of G-substrate were detected within 10 min after coincubation of G-substrate and calpain. Moreover, G-substrate knockout (G-substrate,/,) mice were more susceptible to NMDA injury than wild-type mice. ALLN did not have a neuroprotective effect in G-substrate,/, mice. These data strongly suggest that calpain-mediated loss of G-substrate represents an important mechanism contributing to NMDA-induced amacrine cell death. © 2008 Wiley-Liss, Inc. [source]


On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 5 2006
Iman Sahly
Abstract The transformation of a transected axonal tip into a growth cone (GC) after axotomy is a critical step in the cascade of events leading to regeneration. However, the mechanisms underlying it are largely unknown. In earlier studies we reported that axotomy of cultured Aplysia neurons leads to a transient and local increase in the free intracellular Ca2+ concentration, calpain activation, and localized proteolysis of the submembranal spectrin. In a recent ultrastructural study, we reported that calpain activation is critical for the restructuring of the microtubules and neurofilaments at the cut axonal end to form a compartment in which vesicles accumulate. By using on-line confocal imaging of microtubules (MTs), actin, and vesicles in cultured Aplysia neurons, we studied the kinetics of the transformation and examined some of the mechanisms that orchestrate it. We report that perturbation of the MTs' polymerization by nocodazole inhibits the formation of an MT-based compartment in which the vesicles accumulate, yet actin repolymerization proceeds normally to form a nascent GC's lamellipodium. Nevertheless, under these conditions, the lamellipodium fails to expand and form neurites. When actin filament polymerization is inhibited by cytochalasin D or jasplakinolide, the MT-based compartment is formed and vesicles accumulate at the cut axonal end. However, a GC's lamellipodium is not formed, and the cut axonal end fails to regenerate. A growth-competent GC is formed only when MT restructuring, the accumulation of vesicles, and actin polymerization properly converge in time and space. J. Comp. Neurol. 494:705,720, 2006. © 2005 Wiley-Liss, Inc. [source]