Calc-silicate Rocks (calc-silicate + rock)

Distribution by Scientific Domains


Selected Abstracts


Prograde P,T path of medium-pressure granulite facies calc-silicate rocks, Higo metamorphic terrane, central Kyushu, Japan

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2009
K. MAKI
Abstract This paper reports an occurrence of medium-pressure granulite facies calc-silicate rocks intercalated with pelitic gneisses in the Higo metamorphic terrane, central Kyushu, Japan, which is classified as a low- P/high- T (andalusite-sillimanite type) metamorphic belt. Three equilibrium stages are recognized in the calc-silicate rock based on reaction textures: M1 stage characterized by an assemblage of porphyroblastic garnet + coarse-grained clinopyroxene + plagioclase included in the clinopyroxene; M2 stage by two kinds of breakdown products of garnet, one is plagioclase + coronitic clinopyroxene within garnet and the other is plagioclase + vermicular clinopyroxene surrounding garnet; and M3 stage by amphibole replacing clinopyroxene. The key assemblage in the calc-silicate rock common to M1 and M2 stages is Grt + Cpx + Pl ± Qtz, which constrains the pressure and temperature (P,T) conditions for these stages by Fe,Mg exchange reaction and the two univariant net-transfer reactions: 2Grs + Alm + 3Qtz = 3Hd + 3An or 2Grs + Prp + 3Qtz = 3Di + 3An. The P,T conditions for M1 and M2 stages were estimated to be about 8.4 ± 1.9 kbar and 680 ± 122 °C, and 6.7 ± 1.9 to 8.9 ± 2.2 kbar and 700 ± 130 to 820 ± 160 °C, respectively. Estimates are consistent with an isobaric heating P,T path. The high peak temperature conditions at normal crustal depths and the prograde isobaric heating path probably require heat advection due to melt migration during the high- T metamorphism. [source]


High-Si phengite, mineral chemistry and P,T evolution of ultra-high-pressure eclogites and calc-silicates from the Dabie Shan, eastern China

GEOLOGICAL JOURNAL, Issue 3-4 2000
Robert Schmid
Abstract A suite of coesite,eclogites and associated calc-silicate rocks from the ultra-high-pressure (UHP) belt in the Dabie Shan (eastern China) was investigated petrologically. Field relations and the presence of UHP minerals such as coesite, omphacite and high-Si phengite in the eclogites and the enclosing calc-silicates testify to a common metamorphic evolution for these two lithologies. Except for one sample, all bear phengite with unusually high silica contents (Si up to 3.7 per formula unit). Phengite occupies various textural positions indicating that different metamorphic stages are reflected by these white micas, which correlate with distinct mineral zonation patterns. Using the latest thermobarometric calibrations for eclogite-facies rocks, maximum pressure,temperature (P,T) conditions of 40,48 kbar at <,750°C were estimated for the peak-metamorphic mineral assemblages. These P,T conditions were calculated for both eclogitic garnet porphyroblasts with diffusion-controlled zoning as well as garnet porphyroblasts with prograde growth zonation patterns. Most samples were affected by a strong retrograde overprint mainly under eclogite- and amphibolite-facies conditions. Thermobarometry using mineral sets from different textural positions reveals cooling and decompression of the UHP rocks down to <,20 kbar at <,600°C for the bulk of the samples. Decompression and heating indicated by a few samples is interpreted to result from mineral chemical disequilibrium or late thermal influence. These new data show that subduction of continental crust in the Dabie Shan was deeper than previously thought, and also that some cooling and decompression took place at upper-mantle depths. Copyright © 2000 John Wiley & Sons, Ltd. [source]


Prograde P,T path of medium-pressure granulite facies calc-silicate rocks, Higo metamorphic terrane, central Kyushu, Japan

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2009
K. MAKI
Abstract This paper reports an occurrence of medium-pressure granulite facies calc-silicate rocks intercalated with pelitic gneisses in the Higo metamorphic terrane, central Kyushu, Japan, which is classified as a low- P/high- T (andalusite-sillimanite type) metamorphic belt. Three equilibrium stages are recognized in the calc-silicate rock based on reaction textures: M1 stage characterized by an assemblage of porphyroblastic garnet + coarse-grained clinopyroxene + plagioclase included in the clinopyroxene; M2 stage by two kinds of breakdown products of garnet, one is plagioclase + coronitic clinopyroxene within garnet and the other is plagioclase + vermicular clinopyroxene surrounding garnet; and M3 stage by amphibole replacing clinopyroxene. The key assemblage in the calc-silicate rock common to M1 and M2 stages is Grt + Cpx + Pl ± Qtz, which constrains the pressure and temperature (P,T) conditions for these stages by Fe,Mg exchange reaction and the two univariant net-transfer reactions: 2Grs + Alm + 3Qtz = 3Hd + 3An or 2Grs + Prp + 3Qtz = 3Di + 3An. The P,T conditions for M1 and M2 stages were estimated to be about 8.4 ± 1.9 kbar and 680 ± 122 °C, and 6.7 ± 1.9 to 8.9 ± 2.2 kbar and 700 ± 130 to 820 ± 160 °C, respectively. Estimates are consistent with an isobaric heating P,T path. The high peak temperature conditions at normal crustal depths and the prograde isobaric heating path probably require heat advection due to melt migration during the high- T metamorphism. [source]


Neoproterozoic high-pressure/low-temperature metamorphic rocks in the Avalon terrane, southern New Brunswick, Canada

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2001
C. E. White
Abstract High -P/low -T metamorphic rocks of the Hammondvale metamorphic suite (HMS) are exposed in an area of 10 km2 on the NW margin of the Caledonian (Avalon) terrane in southern New Brunswick, Canada. The HMS is in faulted contact on the SE with c. 560,550 Ma volcanic and sedimentary rocks and co-magmatic plutonic units of the Caledonian terrane. The HMS consists of albite- and garnet-porphyroblastic mica schist, with minor marble, calc-silicate rocks and quartzite. Pressure and temperature estimates from metamorphic assemblages in the mica schist and calc-silicate rocks using TWQ indicate that peak pressure conditions were 12.4 kbar at 430 °C. Peak temperature conditions were 580 °C at 9.0 kbar. 40Ar/39Ar muscovite ages from three samples range up to 618,615 Ma, a minimum age for high -P/low- T metamorphism in this unit. These ages indicate that the HMS is related to the c. 625,600 Ma subduction-generated volcanic and plutonic units exposed to the SE in the Caledonian terrane. The ages are also similar to those obtained from detrital muscovite in a Neoproterozoic-Cambrian sedimentary sequence in the Caledonian terrane, suggesting that the HMS was exposed by latest Neoproterozoic time and supplied detritus to the sedimentary units. The HMS is interpreted to represent a fragment of an accretionary complex, similar to the Sanbagawa Belt in Japan. It confirms the presence of a major cryptic suture between the Avalon terrane sensu stricto and the now-adjacent Brookville terrane. [source]