| |||
Calcium Hypochlorite (calcium + hypochlorite)
Selected AbstractsHighly Efficient Synthesis of New ,-Arylamino-,,-chloropropan-2-ones via Oxidative Hydrolysis of Vinyl Chlorides Promoted by Calcium HypochloriteADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 18 2009Vittorio Pace Abstract The oxidative hydrolysis of different trifluoroacetyl-protected N -(2-chloroallyl)anilines, promoted by calcium hypochlorite, is able to yield several not previously described ,-arylamino-,,-chloropropan-2-ones, very valuable building blocks that are useful as precursors of several drugs, in excellent yields and short reaction times. The main requirement of the reaction for avoiding the undesired aromatic chlorination (N -protection) is effectively solved by the use of the easily formed and removed N -trifluoroacetyl group. Thus, it is possible to perform the oxidative hydrolysis-deprotection step using a one-pot strategy, obtaining quantitative yields in very short reaction times. [source] Studies on internal and external water treatment at a paper and cardboard factoryJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2003Mamdouh M Nassar Abstract The treatment of effluent from a paper/board factory that produced 280 tons of cardboard and consumed 1200 m3 of water per day was carried out. Wastewater analysis showed that the mill effluent contained 3000 mg dm,3 suspended solids, 1400 mg dm,3 COD (chemical oxygen demand) and 500 mg dm,3 BOD (biochemical oxygen demand). An internal treatment cycle is suggested that involves recirculation of paper-machine wastewater (white-water) and may be accomplished by installing a flotation saveall (fiber recovery) unit. This arrangement reduced fresh water use by about 90%, reduced fiber loss by 80,90%, and increased board production by 13%. An external treatment process for the effluent was assessed by conducting laboratory coagulation tests (alum, ferric chloride, ferrous sulfate, and polyelectrolyte) on the whole mill effluent. Oxidation of the mill effluent using calcium hypochlorite before discharging the effluent to a lagoon offers the benefits of killing the harmful bacteria and reducing the pollution load. Copyright © 2003 Society of Chemical Industry [source] Acidified Sodium Chlorite as an Alternative to Chlorine for Elimination of Salmonella on Alfalfa SeedsJOURNAL OF FOOD SCIENCE, Issue 4 2009C.-H. Liao ABSTRACT:, The health and environmental hazard associated with the use of chlorine for food processing has been documented previously. This study was conducted to determine if acidified sodium chlorite (ASC) could be used to replace calcium hypochlorite (Ca[OCl]2) for disinfection of alfalfa seeds. Contaminated seeds containing approximately 1.5 × 107 CFU/g of Salmonella were treated with ASC or Ca(OCl)2 at different concentrations and for different periods of time. Results showed that the efficacy of ASC and Ca(OCl)2 for elimination of Salmonella on contaminated seeds could be improved greatly by extending the treatment time from the traditional 15 to 45 min. Treatment of seeds with 800 ppm of ASC for 45 min reduced the number of Salmonella by 3.9 log units, approximately 1.2 log units higher than that treated with 20000 ppm of Ca(OCl)2. Treatment of seeds with a lower concentration (100 to 400 ppm) of ASC for 45 min reduced the number of Salmonella by 1.3 to 2.2 log units. Soaking alfalfa seeds in 800 ppm of ASC for 45 min did not affect seed germination. However, soaking seeds in 20000 ppm of Ca(OCl)2 for 45 min reduced seed germination by 20%. Unlike Ca(OCl)2, antimicrobial efficiency of ASC was not affected by pre-exposure to alfalfa seeds. Data presented also showed that Salmonella on newly inoculated seeds that had been stored at 4 °C for less than 7 d were more sensitive to sanitizer treatment than those on seeds that had been stored for 4 wk or longer. [source] |