| |||
Calcination Treatment (calcination + treatment)
Selected AbstractsLi4Ti5O12 Nanoparticles Prepared with Gel-hydrothermal Process as a High Performance Anode Material for Li-ion BatteriesCHINESE JOURNAL OF CHEMISTRY, Issue 6 2010Zheng Qiu Abstract Li4Ti5O12 (LTO) nanoparticles were prepared by gel-hydrothermal process and subsequent calcination treatment. Calcination treatment led to structural water removal, decomposition of organics and primary formation of LTO. The formation temperature of spinel LTO nanoparticles was lower than that of bulk materials counterpart prepared by solid-state reaction or by sol-gel processing. Based on the thermal gravimetric analysis (TG) and differential thermal gravimetric (DTG), samples calcined at different temperatures (350, 500 and 700°C) were characterized by X-ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), transmission electron microscopy (TEM), cyclic voltammogram and charge-discharge cycling tests. A phase transition during the calcination process was observed from the XRD patterns. And the sample calcined at 500°C had a distribution of diameters around 20 nm and exhibited large capacity and good high rate capability. The well reversible cyclic voltammetric results of both electrodes indicated enhanced electrochemical kinetics for lithium insertion. It was found that the Li4Ti5O12 anode material prepared through gel-hydrothermal process, when being cycled at 8 C, could preserve 76.6% of the capacity at 0.3 C. Meanwhile, the discharge capacity can reach up to 160.3 mAh·g,1 even after 100 cycles at 1 C, close to the theoretical capacity of 175 mAh·g,1. The gel-hydrothermal method seemed to be a promising method to synthesize LTO nanoparticles with good application in lithium ion batteries and electrochemical cells. [source] Synthesis of Luminescent ZrO2:Eu3+ Nanoparticles and Their Holographic Sub-Micrometer Patterning in Polymer CompositesADVANCED FUNCTIONAL MATERIALS, Issue 11 2009Tsedev Ninjbadgar Abstract Here, the facile synthesis of fluorescent ZrO2:Eu3+ nanoparticles with luminescence quantum yield of up to 8.7% that can be easily dispersed in organic solvents and utilized for the preparation of organic/inorganic volume holographic gratings is presented. The nanoparticles are prepared through a one-step solvothermal process resulting in spherical particles with a mean size of 4,nm that were highly crystalline directly after the synthesis, without any need for calcination treatment. Detailed luminescence studies of the nanoparticles as a function of Eu3+ content demonstrate that the dopant concentration and its site symmetry play an important role in the emissive properties and lifetime of the luminescent centers. It is shown that the luminescence quantum yield of the colloidal ZrO2:Eu3+ nanoparticles increases with dopant concentration up to a critical concentration of 11 mol% while the luminescence lifetime is shortened from 1.8 to 1.4 ms. Holographic photopolymerization of suitable monomer mixtures containing the luminescent nanoparticles demonstrated the ability to inscribe volume Bragg gratings (refractive index contrast n1 up to 0.011) with light-emissive properties, evidencing the high suitability of this approach for the fabrication of tailored nanomaterials for elaborate and demanding applications. [source] Base-free catalytic aerobic oxidation of mercaptans for gasoline sweetening over HTLcs-derived CuZnAl catalystAICHE JOURNAL, Issue 12 2009Lida Gao Abstract An aerobic oxidative removal of mercaptans from gasoline in the absence of liquid base has been demonstrated for gasoline sweetening over CuZnAl catalyst. This process could proceed at large WHSV of gasoline (50,70 h,1) with >95% mercaptan conversion at 150°C (or 300°C) using an O2/S molar ratio of 20,40. At 150°C, dimerization of mercaptans occurred dominantly to form their disulfides. At 300°C, deep oxidation of the mercaptans to SO2 was the dominant process in the first tens of hours, but it decreased then with prolonged time on stream and meanwhile the dimerization increased. The spent catalyst could be restored to its fresh activity level only through a calcination treatment in air. This process was also demonstrated to be effective and efficient for sweetening of a real cracking gasoline. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Single-Calcination Synthesis of Pyrochlore-Free 0.9Pb(Mg1/3Nb2/3)O3,0.1PbTiO3 and Pb(Mg1/3Nb2/3)O3 Ceramics Using a Coating MethodJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2003Huiming Gu A coating approach for synthesizing 0.9Pb(Mg1/3Nb2/3)O3,0.1PbTiO3 (0.9PMN,0.1PT) and PMN using a single calcination step was demonstrated. The pyrochlore phase was prevented by coating Mg(OH)2 on Nb2O5 particles. Coating of Mg(OH)2 on Nb2O5 was done by precipitating Mg(OH)2 in an aqueous Nb2O5 suspension at pH 10. The coating was confirmed using optical micrographs and zeta-potential measurements. A single calcination treatment of the Mg(OH)2 -coated Nb2O5 particles mixed with appropriate amounts of PbO and PbTiO3 powders at 900°C for 2 h produced pyrochlore-free perovskite 0.9PMN,0.1PT and PMN powders. The elimination of the pyrochlore phase was attributed to the separation of PbO and Nb2O5 by the Mg(OH)2 coating. The Mg(OH)2 coating on the Nb2O5 improved the mixing of Mg(OH)2 and Nb2O5 and decreased the temperature for complete columbite conversion to ,850°C. The pyrochlore-free perovskite 0.9PMN,0.1PT powders were sintered to 97% density at 1150°C. The sintered 0.9PMN,0.1PT ceramics exhibited a dielectric constant maximum of ,24 660 at 45°C at a frequency of 1 kHz. [source] Li4Ti5O12 Nanoparticles Prepared with Gel-hydrothermal Process as a High Performance Anode Material for Li-ion BatteriesCHINESE JOURNAL OF CHEMISTRY, Issue 6 2010Zheng Qiu Abstract Li4Ti5O12 (LTO) nanoparticles were prepared by gel-hydrothermal process and subsequent calcination treatment. Calcination treatment led to structural water removal, decomposition of organics and primary formation of LTO. The formation temperature of spinel LTO nanoparticles was lower than that of bulk materials counterpart prepared by solid-state reaction or by sol-gel processing. Based on the thermal gravimetric analysis (TG) and differential thermal gravimetric (DTG), samples calcined at different temperatures (350, 500 and 700°C) were characterized by X-ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), transmission electron microscopy (TEM), cyclic voltammogram and charge-discharge cycling tests. A phase transition during the calcination process was observed from the XRD patterns. And the sample calcined at 500°C had a distribution of diameters around 20 nm and exhibited large capacity and good high rate capability. The well reversible cyclic voltammetric results of both electrodes indicated enhanced electrochemical kinetics for lithium insertion. It was found that the Li4Ti5O12 anode material prepared through gel-hydrothermal process, when being cycled at 8 C, could preserve 76.6% of the capacity at 0.3 C. Meanwhile, the discharge capacity can reach up to 160.3 mAh·g,1 even after 100 cycles at 1 C, close to the theoretical capacity of 175 mAh·g,1. The gel-hydrothermal method seemed to be a promising method to synthesize LTO nanoparticles with good application in lithium ion batteries and electrochemical cells. [source] |