| |||
Cavitation Resistance (cavitation + resistance)
Selected AbstractsDesert shrub water relations with respect to soil characteristics and plant functional typeFUNCTIONAL ECOLOGY, Issue 3 2002J. S. Sperry Summary 1.,Soil characteristics influence plant communities in part through water relations. Hypothetically, finer textured soils in arid climates should be associated with more negative plant and soil water potentials during drought, greater resistance of xylem to cavitation, and shallower root systems than coarse soils. 2.,These hypotheses were tested by comparing the water relations of Great Basin shrubs growing in sand versus loam soils. The eight study species (Chrysothamnus nauseosus, Chrysothamnus viscidiflorus, Chrysothamnus parryi, Tetradymia glabrata, Atriplex canescens, Atriplex confertifolia, Grayia spinosa and Sarcobatus vermiculatus) varied in typical rooting depth and vegetative phenology. 3.,Xylem pressures for a species were, on average, 1·1 MPa more negative in the loam versus the sand site, despite greater precipitation at the loam site. Root xylem at the loam site was, on average, 0·9 MPa more resistant to cavitation than at the sand site for the same species. There was a strong trend for shallower rooting depths at the loam versus the sand site. Within a species, roots were consistently more vulnerable to cavitation than stems, and experienced more cavitation during the growing season. 4.,Over most of the summer there was much more cavitation at the loam site than at the sand site. More than 80% loss of xylem conductivity (PLC) was estimated in shallow roots of three species at the loam site by the end of July, with two of the three showing extensive leaf drop and branch mortality. Transpiration rate was negatively correlated with PLC, with a tendency for lower gas-exchange rates in loam versus sand. 5.,At the sand site, cavitation resistance was negatively correlated with estimated rooting depth. Drought-deciduous species had the shallowest root systems and greatest resistance to cavitation. In contrast, two species with phreatophytic tendencies were summer-active and were the most vulnerable to cavitation. 6.,The cavitation resistance of roots determines the minimum water potential permitting hydraulic contact with soil. Differences in cavitation resistance of roots between desert species may contribute to differences in sensitivity of gas exchange to soil drought, ability to perform hydraulic lift, and response to late summer rain pulses. [source] New insights into bordered pit structure and cavitation resistance in angiosperms and conifersNEW PHYTOLOGIST, Issue 3 2009Brendan Choat First page of article [source] Comparative community physiology: nonconvergence in water relations among three semi-arid shrub communitiesNEW PHYTOLOGIST, Issue 1 2008Anna L. Jacobsen Summary ,,Plant adaptations to the environment are limited, and therefore plants in similar environments may display similar functional and physiological traits, a pattern termed functional convergence. Evidence was examined for functional convergence among 28 evergreen woody shrubs from three plant communities of the semi-arid winter rainfall region of southern California. ,,Both leaf and water relations traits were examined, including seasonal stomatal conductance (gs), specific leaf area (SLA), leaf specific conductivity (Kl), seasonal water potential (,w), stem cavitation resistance (,50), and xylem density. ,,Species display community-specific suites of xylem and leaf traits consistent with different patterns of water use among communities, with coastal sage scrub species utilizing shallow pulses of water, Mojave Desert scrub species relying on deeper water reserves, and chaparral species utilizing both shallow and deep moisture reserves. Communities displayed similar degrees of water stress, with a community-level minimum ,w (,wmin) of c. ,4.6 Mpa, similar to other arid communities. Pooled across sites, there was a strong correlation between ,wmin and xylem density, suggesting that these traits are broadly related and predictive of one another. ,This comparative community physiology approach may be useful in testing hypotheses of functional convergence across structurally similar semi-arid communities. [source] Long-term acclimatization of hydraulic properties, xylem conduit size, wall strength and cavitation resistance in Phaseolus vulgaris in response to different environmental effectsPLANT CELL & ENVIRONMENT, Issue 5 2006ELLEN K. HOLSTE ABSTRACT Phaseolus vulgaris grown under various environmental conditions was used to assess long-term acclimatization of xylem structural characteristics and hydraulic properties. Conduit diameter tended to be reduced and ,wood' density (of ,woody' stems) increased under low moisture (,dry'), increased soil porosity (,porous soil') and low phosphorus (,low P') treatments. Dry and low P had the largest percentage of small vessels. Dry, low light (,shade') and porous soil treatments decreased P50 (50% loss in conductivity) by 0.15,0.25 MPa (greater cavitation resistance) compared with ,controls'. By contrast, low P increased P50 by 0.30 MPa (less cavitation resistance) compared with porous soil (the control for low P). Changes in cavitation resistance were independent of conduit diameter. By contrast, changes in cavitation resistance were correlated with wood density for the control, dry and porous soil treatments, but did not appear to be a function of wood density for the shade and low P treatments. In a separate experiment comparing control and porous soil plants, stem hydraulic conductivity (kh), specific conductivity (ks), leaf specific conductivity (LSC), total pot water loss, plant biomass and leaf area were all greater for control plants compared to porous soil plants. Porous soil plants, however, demonstrated higher midday stomatal conductance to water vapour (gs), apparently because they experienced proportionally less midday xylem cavitation. [source] |