Cadmium Chloride (cadmium + chloride)

Distribution by Scientific Domains


Selected Abstracts


Optical and dielectric studies on pure and Ni2+, Co2+ doped single crystals of bis thiourea cadmium chloride

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 4 2008
R. Uthrakumar
Abstract Good quality single crystals of Ni2+, Co2+ ions doped Bisthiourea Cadmium Chloride (BTCC) are some of the excellent and efficient non-linear optical materials grown from aqueous solution by slow evaporation method. The lattice parameters of the grown crystals are determined by single crystal X-ray analysis. UV spectral analyses on these samples reveal the improved transparency of the doped crystals ascertaining the inclusion of metal ion in the lattice. FTIR spectral analysis carried out on the materials confirm the presence of functional groups. Dielectric measurements reveal that the dielectric constant of pure and doped crystals decreases with increase of frequency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


ChemInform Abstract: Synthesis of Americium Trichloride by the Reaction of Americium Nitride with Cadmium Chloride.

CHEMINFORM, Issue 32 2008
Hirokazu Hayashi
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Optical and dielectric studies on pure and Ni2+, Co2+ doped single crystals of bis thiourea cadmium chloride

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 4 2008
R. Uthrakumar
Abstract Good quality single crystals of Ni2+, Co2+ ions doped Bisthiourea Cadmium Chloride (BTCC) are some of the excellent and efficient non-linear optical materials grown from aqueous solution by slow evaporation method. The lattice parameters of the grown crystals are determined by single crystal X-ray analysis. UV spectral analyses on these samples reveal the improved transparency of the doped crystals ascertaining the inclusion of metal ion in the lattice. FTIR spectral analysis carried out on the materials confirm the presence of functional groups. Dielectric measurements reveal that the dielectric constant of pure and doped crystals decreases with increase of frequency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Effect of different metal ions on structural, thermal, spectroscopic and optical properties of ATCC and ATMC single crystals

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2007
R. Perumal
Abstract A novel metal-organic coordination complex nonlinear optical crystals, tri-allylthiourea cadmium chloride [(CdCl2(AT)3] and tri-allylthiourea mercury chloride [(HgCl2(AT)3] abbreviated as ATCC, ATMC (AT is Allylthiourea i.e.,CH2=CHCH2NHCSNH2) has been synthesized and grown as single crystals. It was synthesized in deionised water and further recrystallized to improve its purity. Single crystals of the allylthiourea co-ordination complex nonlinear optical crystals tri allylthiourea cadmium chloride (ATCC) with dimensions of 14x14x10 mm3 and tri allylthiourea mercury chloride (ATMC) with dimensions of 15x15x12 mm3 were grown successfully from aqueous solution by solvent evaporation as well as by temperature lowering method. It exhibits powder SHG efficiencies higher than that of a well known organic NLO crystal Urea. The solubility of the as grown crystals was estimated from the aqueous solution and the effect of different metal ions on the grown crystals, structural, thermal, spectral and optical properties were analyzed. XRD studies the reveals the same structure of both materials. Influence of the different central metal (Cd and Hg) atoms, changing the thermal properties of the materials when NLO complexes formed with the common ligand allylthiourea. The metal co-ordination was confirmed form the spectroscopic analysis. From the UV transmittance studies, red shift was from the transparency cut-off wavelengths. The value is 285nm for ATCC is and is 335nm ATMC, Non-linear an optical study confirms the suitabilities of the as grown crystals for the non linear optical applications. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


In vivo exposure to microcystins induces DNA damage in the haemocytes of the zebra mussel, Dreissena polymorpha, as measured with the comet assay

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2007
Guillaume Juhel
Abstract The Comet assay was used to investigate the potential of the biotoxin microcystin (MC) to induce DNA damage in the freshwater zebra mussel, Dreissena polymorpha. Mussels maintained in the laboratory were fed daily, over a 21-day period, with one of four strains of the cyanobacterium, Microcystis aeruginosa. Three of the strains produced different profiles of MC toxin, while the fourth strain did not produce MCs. The mussels were sampled at 0, 7, 14, and 21 days by withdrawing haemocytes from their adductor muscle. In addition, a positive control was performed by exposing a subsample of the mussels to water containing cadmium chloride (CdCl2). Cell viability, measured with the Fluorescein Diacetate/Ethidium Bromide test, indicated that the MC concentrations, to which the mussels were exposed, were not cytotoxic to the haemocytes. The Comet assay performed on the haemocytes indicated that exposure to CdCl2 produced a dose-responsive increase in DNA damage, demonstrating that mussel haemocytes were sensitive to DNA-damaging agents. DNA damage, measured as percentage tail DNA (%tDNA), was observed in mussels exposed to the three toxic Microcystis strains, but not in mussels exposed to the nontoxic strain. Toxin analysis of the cyanobacterial cultures confirmed that the three MC-producing strains exhibit different toxin profiles, with the two MC variants detected being MC-LF and MC-LR. Furthermore, the DNA damage that was observed appeared to be strain-specific, with high doses of MC-LF being associated with a higher level of genotoxicity than low concentrations of MC-LR. High levels of MC-LF also seemed to induce relatively more persistent DNA damage than small quantities of MC-LR. This study is the first to demonstrate that in vivo exposure to MC-producing strains of cyanobacteria induces DNA damage in the haemocytes of zebra mussels and confirms the sublethal toxicity of these toxins. Environ. Mol. Mutagen., 2007. © 2006 Wiley-Liss, Inc. [source]


Levels of transaminases, alkaline phosphatase, and protein in tissues of Clarias gariepienus fingerlings exposed to sublethal concentrations of cadmium chloride

ENVIRONMENTAL TOXICOLOGY, Issue 6 2008
Babu Velmurugan
Abstract The freshwater fish, Clarias gariepienus fingerlings, were exposed to sublethal concentrations (1.7 and 3.4 mg/L) of cadmium chloride for 12 days. Aspartate aminotransferase (AAT), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total protein levels were assayed in the gill, brain, and muscle of the fish at regular intervals of 6 and 12 days. The activities of AAT, ALT, and ALP of the treated fishes increased significantly in all the tissues compared with the control fish. Protein level in all the tissues showed a significant decrease in comparison to unexposed controls throughout the experimental periods. These results revealed that cadmium chloride effects the intermediary metabolism of C. gariepienus fingerlings and that the assayed enzymes can work as good biomarkers of contamination. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2008. [source]


Molecular responses of Campylobacter jejuni to cadmium stress

FEBS JOURNAL, Issue 20 2008
Nadeem O. Kaakoush
Cadmium ions are a potent carcinogen in animals, and cadmium is a toxic metal of significant environmental importance for humans. Response curves were used to investigate the effects of cadmium chloride on the growth of Camplyobacter jejuni. In vitro, the bacterium showed reduced growth in the presence of 0.1 mm cadmium chloride, and the metal ions were lethal at 1 mm concentration. Two-dimensional gel electrophoresis combined with tandem mass spectrometry analysis enabled identification of 67 proteins differentially expressed in cells grown without and with 0.1 mm cadmium chloride. Cellular processes and pathways regulated under cadmium stress included fatty acid biosynthesis, protein biosynthesis, chemotaxis and mobility, the tricarboxylic acid cycle, protein modification, redox processes and the heat-shock response. Disulfide reductases and their substrates play many roles in cellular processes, including protection against reactive oxygen species and detoxification of xenobiotics, such as cadmium. The effects of cadmium on thioredoxin reductase and disulfide reductases using glutathione as a substrate were studied in bacterial lysates by spectrophotometry and nuclear magnetic resonance spectroscopy, respectively. The presence of 0.1 mm cadmium ions modulated the activities of both enzymes. The interactions of cadmium ions with oxidized glutathione and reduced glutathione were investigated using nuclear magnetic resonance spectroscopy. The data suggested that, unlike other organisms, C. jejuni downregulates thioredoxin reductase and upregulates other disulfide reductases involved in metal detoxification in the presence of cadmium. [source]


The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice

JOURNAL OF APPLIED TOXICOLOGY, Issue 3 2006
Vladislav Eybl
Abstract Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 µmol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation , expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Combined pulmonary toxicity of cadmium chloride and sodium diethyldithiocarbamate

JOURNAL OF APPLIED TOXICOLOGY, Issue 2 2001
Erzsébet Tátrai
Abstract The pulmonary toxicity of sodium diethyldithiocarbamate and cadmium chloride, each separately and in combination, was compared in Sprague-Dawley rats after single intratracheal instillation in sequential experiments by chemical, immunological and morphological methods. With combined exposure, the cadmium content of the lungs increased permanently relative to that of the lungs of just cadmium-treated animals. Immunoglobulin levels of the whole blood did not change, whereas in bronchoalveolar lavage the IgA and IgG levels increased significantly. Morphological changes were characteristic of the effects of cadmium but were more extensive and more serious than in the case of cadmium administration alone: by the end of the first month, interstitial fibrosis, emphysema and injury of membranes of type I pneumocytes developed and hypertrophy and loss of microvilli in type II pneumocytes were detectable. These results showed that although dithiocarbamates as chelating agents are suitable for the removal of cadmium from organisms, they alter the redistribution of cadmium within the organism, thereby increasing the cadmium content in the lungs, and structural changes are more serious than observed upon cadmium exposure alone. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Characterization of Cd-induced molecular events prior to cellular damage in primary rat hepatocytes in culture: Activation of the stress activated signal protein JNK and transcription factor AP-1

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2004
Chin-ju J. Hsiao
Abstract The effect of Cadmium (Cd) on the expression of c-Jun N -terminal kinase (JNK), c-jun, and activator protein-1 (AP-1) has been investigated. We previously reported that Cd causes cell damage as indicated by increases in the cytotoxic parameters, lactate dehydrogenase and lipid peroxidation, and this damage was mediated by decreases in cellular concentration of glutathione. In the present study, we investigate the molecular events involved prior to the Cd-induced cellular toxicity and damage in primary rat hepatocytes. We propose that Cd, through the generation of reactive oxygen species (ROS) and prior to significant cellular damage, activates the stress activated signal protein JNK, regulates c-jun expression, and promotes the binding of a redox sensitive transcription factor AP-1. We show JNK activity and c-jun mRNA level significantly increased at 1 h and AP-1 DNA binding activity significantly enhanced at 3 h in the presence of 4 ,M cadmium chloride. Blocking the Cd induction of JNK activity, c-jun mRNA level, and AP-1 binding activity using the antioxidants N -acetyl cysteine (10 mM) or carnosol (0.5 ,g/mL) suggests a role for ROS. Blocking JNK activity and c-jun mRNA by SP600125 (20 ,M), a JNK inhibitor, supports the role of JNK in transmission of signals induced by Cd. © 2004 Wiley Periodicals, Inc. J Biochem Mol Toxicol 18:133,142, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20018 [source]


Cadmium modulates proliferation and differentiation of human neuroblasts

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2009
Massimo Gulisano
Abstract Cadmium is an environmental pollutant inducing numerous pathological effects, including neurological disorders and brain diseases. However, little is known about the molecular mechanisms of cadmium in affecting neurons and in inducing neurotoxicity in the development of the human brain. We have recently established, cloned, and propagated in vitro a primary long-term cell culture (FNC-B4) obtained from the human fetal olfactory neuroepithelium. In the present study, we show that different concentrations of cadmium chloride (CdCl2) induced dose-dependent biological effects in FNC-B4 cells. A low concentration (10 ,M) of CdCl2 stimulated neuroblast growth, whereas a high concentration (100 ,M) inhibited the growth and the viability of neuroblasts inducing morphological and cytoskeletal alterations as well as apoptotic cell death. We also observed that CdCl2 affected, in a dose-dependent manner, the differentiation of FNC-B4 neuroblasts, with increased mRNA and protein levels of differentiation markers and decreased expression levels of neuronal stem markers. Furthermore, differentiated cells co-expressed glial and neuronal markers. We suggest that CdCl2 in FNC-B4 neuroblasts might represent a selective cue by which, in a heterogeneous primary culture, the more differentiated mature cells die, whereas the undifferentiated cells, at the same time glial and neuronal progenitors, are forced to access a state of differentiation. © 2008 Wiley-Liss, Inc. [source]


Pluchea lanceolata attenuates cadmium chloride induced oxidative stress and genotoxicity in Swiss albino mice

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2005
Tamanna Jahangir
Cadmium intoxication induces lipid peroxidation and causes oxidative damage to various tissues by altering antioxidant defence system enzymes. At 24h after treatment with a single intraperitoneal dose of cadmium chloride (5 mg kg,1), Swiss albino mice showed a significant increase in the levels of malanodialdehyde and xanthine oxidase (P<0.001), and a concomitant depletion of renal glutathione, catalase (P<0.001) and other antioxidant enzymes. CdCl2 also led to a simultaneous increase in micronuclei formation (P<0.001) and chromosomal aberrations (P<0.05) in mouse bone marrow cells. Oral pre-treatment with Pluchea lanceolata extract at doses of 100 and 200 mg kg,1 for 7 consecutive days before CdCl2 intoxication caused a significant reduction in malanodialdehyde formation and xanthine oxidase activity (P<0.001). A significant restoration of the activity of antioxidant defence system enzymes such as catalase, glutathione peroxidase (P<0.05), glutathione- S -transferase and glutathione reductase (P<0.001) was observed. A significant dose-dependent decrease in chromosomal aberrations and micronuclei formation was also observed (P<0.05). The results indicate that pre-treatment with P. lanceolata attenuates cadmium chloride induced oxidative stress and genotoxicity by altering antioxidant enzymes and reducing chromatid breaks and micronuclei formation. [source]


Structure and Properties of CdS/Regenerated Cellulose Nanocomposites

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2005
Dong Ruan
Abstract Summary: Novel inorganic-organic hybrid materials composed of cadmium sulfide (CdS) semiconducting nanocrystals and regenerated cellulose (RC) were prepared by using in situ synthesizing method. Cellulose was dissolved in a 6 wt.-% NaOH/4 wt.-% urea/thiourea aqueous solution at low temperature followed by addition of cadmium chloride (CdCl2), resulting that the CdS nanocrystals were successfully grown in situ in the cellulose solution. Nanocomposite films containing homogeneous CdS nanoparticles were obtained by casting the resulting solution. Their structure and optical properties were characterized by X-ray photoelectron spectroscopy, wide-angle X-ray diffraction, thermogravimetry analysis, dynamic mechanical analysis, atomic force microscopy, transmittance electronic microscope, UV-vis spectroscopy, and photoluminescence spectroscopy. The experimental results confirmed that the CdS nanocrystalline existed in the composite films, and cellulose matrix provided a confined medium for CdS particle growth in uniform size. The CdS/RC composites showed narrow emission in photoluminescence spectra, and their optical absorbance in the UV range was higher than that of the cellulose film without CdS. This work provided a simple method to prepare cellulose functional materials in NaOH/urea aqueous solution. Photoluminescence of CdS/RC nanocomposites and TEM image of CdS nanocrystals dispersed in RC matrix. [source]


Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2010
P. O. MIREJI
The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for ,clean' water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl2), copper [as copper II nitrate hydrate, Cu(NO3)2 2.5 H2O] and lead [as lead II nitrate, Pb(NO3)2], monitored by changes in LC50 concentrations of the metals, changed from 6.07 µg/L, 12.42 µg/L and 493.32 µg/L to 4.45 µg/L, 25.02 µg/L and 516.69 µg/L, respectively, after three generations of exposure. The metal-selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal-selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness. [source]


A novel two-dimensional framework based on unprecedented cadmium(II) chains

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 2 2009
Jie Qin
The bent ligand 4-[(1H -1,2,4-triazol-1-yl)methyl]benzoic acid (HL) has been used to create the novel two-dimensional coordination polymer poly[,2 -aqua-,2 -chlorido-{,2 -4-[(1H -1,2,4-triazol-1-yl)methyl]benzoato}cadmium(II)], [Cd(C10H8N3O2)Cl(H2O)]n, under hydrothermal reaction of HL with cadmium chloride. The crystallographically unique Cd atom is seven-coordinated in an approximately pentagonal,bipyramidal environment of two carboxylate O atoms, two water O atoms, two Cl atoms and one triazole N atom. A notable feature is the presence of zigzag ...Cd...Cd... inorganic chains, in which neighboring CdII ions are doubly bridged by pairs of ,2 -Cl atoms and ,2 -H2O ligands in an alternating fashion. To the authors' knowledge, this is the first example containing this bridging mode in a cadmium(II) framework. The chains are connected to one another through the bridging L, ligand into a two-dimensional undulating network. All of the two-dimensional nets stack exactly together in an ,AA, stacking sequence along the crystallographic b axis. Neighboring layers are further linked into a three-dimensional framework via interlayer hydrogen-bonding interactions. [source]


Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli

BIOTECHNOLOGY PROGRESS, Issue 5 2009
Yen-Lin Chen
Abstract Microorganisms can complex and sequester heavy metals, rendering them promising living factories for nanoparticle production. Glutathione (GSH) is pivotal in cadmium sulfide (CdS) nanoparticle formation in yeasts and its synthesis necessitates two enzymes: ,-glutamylcysteine synthetase (,-GCS) and glutathione synthetase (GS). Hereby, we constructed two recombinant E. coli ABLE C strains to over-express either ,-GCS or GS and found that ,-GCS over-expression resulted in inclusion body formation and impaired cell physiology, whereas GS over-expression yielded abundant soluble proteins and barely impeded cell growth. Upon exposure of the recombinant cells to cadmium chloride and sodium sulfide, GS over-expression augmented GSH synthesis and ameliorated CdS nanoparticles formation. The resultant CdS nanoparticles resembled those from the wild-type cells in size (2,5 nm) and wurtzite structures, yet differed in dispersibility and elemental composition. The maximum particle yield attained in the recombinant E. coli was ,2.5 times that attained in the wild-type cells and considerably exceeded that achieved in yeasts. These data implicated the potential of genetic engineering approach to enhancing CdS nanoparticle biosynthesis in bacteria. Additionally, E. coli -based biosynthesis offers a more energy-efficient and eco-friendly method as opposed to chemical processes requiring high temperature and toxic solvents. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Optimization of a whole-cell cadmium sensor with a toggle gene circuit

BIOTECHNOLOGY PROGRESS, Issue 3 2009
Cindy H. Wu
Abstract This work demonstrates improvement of a whole-cell cadmium detection sensor through construction of a gene circuit. A cadmium (II) specific regulatory promoter, PcadR, from Psuedomonas putida 06909, is used in the assembly of a toggle circuit. The circuit contains the cadR promoter fused to lacIq and gfp, and a divergently transcribed tac promoter and cadR. The toggle sensor exhibits lower background fluorescence, and a 20-fold lower detection limit in comparison to a nontoggle gene circuit. The detection limit of the toggle sensor is 0.01 ,M (1.12 ppb) cadmium chloride, and tunable with the addition of isopropyl-b- D -thiogalactopyranoside (IPTG). The toggle sensor is highly specific to cadmium (II), and no response is elicited from zinc, lead, manganese, nickel, copper, and mercury. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Interactive effects of cadmium and all- trans -retinoic acid on the induction of forelimb ectrodactyly in C57BL/6 mice,

BIRTH DEFECTS RESEARCH, Issue 1 2006
Grace S. Lee
Abstract BACKGROUND Most toxicological studies have tested single chemical agents at relatively high doses, and fewer studies have addressed the toxic effects of chemical interactions. It is important to understand the toxicity of chemical mixtures in order to assess the more realistic risks of environmental and occupational exposures. A number of chemicals are known to induce a predominantly postaxial forelimb ectrodactyly in C57BL/6 mice, including acetazolamide, ethanol, cadmium, valproic acid, carbon dioxide, dimethadione, phenytoin, and 13- cis -retinoic acid and all- trans -retinoic acid (RA). In the present study, the interactive effects of coadministration of cadmium and RA on developing limbs were investigated. METHODS Pregnant C57BL/6 mice were treated with different intraperitoneal (IP) doses of cadmium chloride (CdCl2) and/or RA on gestational day (GD) 9.5, and fetuses were collected on GD 18 and double stained for examination of skeletal defects. RESULTS When RA was given simultaneously with cadmium, a significant increase in the incidence and severity of forelimb ectrodactyly (predominantly postaxial) was observed compared to the results with corresponding doses of cadmium or RA alone. When mice were exposed to subthreshold doses of both cadmium (0.5 mg/kg) and RA (1 mg/kg), the combined treatment exceeded the threshold, resulting in forelimb ectrodactyly in 19% of the fetuses. Moreover, coadministration of cadmium and RA at doses exceeding the respective thresholds showed a synergistic effect, that is, 92% of fetuses were found with the forelimb defect as opposed to 10% if the response were additive. CONCLUSIONS The findings demonstrate that concurrent exposure to these teratogens can have a synergistic effect and that subteratogenic doses may combine to exceed a threshold. Birth Defects Research (Part A), 2005. © 2005 Wiley-Liss, Inc. [source]


IMPROVING THE CADMIUM-INDUCED CENTRIACINAR EMPHYSEMA MODEL IN RATS BY CONCOMITANT ANTI-OXIDANT TREATMENT

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 11 2008
S Heili Frades
SUMMARY 1The aim of the present study was to perform an evolutionary analysis of the morphometrical, biochemical and functional parameters of centriacinar emphysema induced by cadmium chloride (CdCl2) in rats and to determine the effects of concomitant N -acetylcysteine (NAC) administration. 2Male Wistar rats were instilled orotracheally with either CdCl2 (n = 24) or saline (n = 24). One group of rats, consisting of both CdCl2 - and saline-treated rats, was fed a normal diet (n = 24), whereas the other group received NAC (n = 24). 3Changes in inspiratory capacity (IC), lung compliance (CL), expiratory flow at 75% (F75), forced vital capacity (FVC) and hydroxyproline content were assessed 2, 8, 21 and 45 days after instillation. Polymorphonuclear cells were evaluated 2 and 8 days after instillation and the mean linear intercept (Lm) was determined at 21 and 45 days. 4Over time, CdCl2 instillation causes several changes that are bound up with centriacinar emphysema. The concomitant administration of NAC to CdCl2 -treated rats partially reversed Lm at 21 days compared with CdCl2 alone (115 ± 2 vs 127 ± 2, respectively; P < 0.05). However, 45 days after instillation, NAC improved lung function in CdCl2 -treated rats compared with that in the saline-treated control group (IC 14.64 vs 15.25, respectively (P = 0.054); FVC 16.94 vs 16.28, respectively (P = 0.052), F75 31.41 vs 32.48, respectively (P = 0.062)). In addition, 45 days after instillation, NAC reduced lung collagen content in both the saline-treated control (100 vs 81% alone and in the presence of NAC, respectively) and CdCL2-treated groups (213 vs 161% alone and in the presence of NAC, respectively). In addition, although the results were not significant, NAC tended to reduce Lm and enhance CL in NAC + CdCl2 -treated rats. 5In conclusion, NAC partially improved emphysematous changes and reduced collagen deposition, which diminished the CdCl2 -induced fibrotic component of centriacinar emphysema. [source]