| |||
Ca2+ Signaling Pathways (ca2+ + signaling_pathway)
Selected AbstractsRole of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009Nobuo Sakamoto This study was conducted to examine the role of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in monocyte adhesion-induced redox-sensitive, Akt/eNOS and Ca2+ signaling pathways in endothelial cells (ECs). LOX-1 was blocked by an antibody-neutralizing LOX-1 TS92 or small interfering RNA. In cultured human aortic ECs, monocyte adhesion activated Rac1 and p47phox, and increased NADPH oxidase activity and reactive oxygen species (ROS) generation within 30,min and NF-,B phosphorylation within 1,h, resulting in redox-sensitive gene expression. Akt and eNOS phosphorylation was induced 15,min after adding monocytes and returned to control level after 30,min, whereas NO production was not altered by monocyte adhesion. Blockade of LOX-1 blunted the monocyte adhesion-triggered redox-sensitive signaling pathway and Akt/eNOS phosphorylation in ECs. Both endothelial intracellular Ca2+ mobilization and Ca2+ influx caused by monocyte attachment were markedly attenuated by pretreatment of ECs with TS92. This suggests that LOX-1 is involved in redox-sensitive, Akt/eNOS and Ca2+ signaling pathways in monocyte adhesion to ECs independent of oxidized low-density lipoprotein (ox-LDL). Furthermore, blockade of Ca2+ inhibited monocyte adhesion-triggered Rac1 and p47phox activation and ROS generation in ECs, whereas Ca2+ signaling was suppressed by blockade of NADPH oxidase and ROS generation. Finally, TS92 blocked the monocyte adhesion to ECs stimulated with or without tumor necrosis factor-, or ox-LDL. We provide evidence that LOX-1 plays a role in redox-sensitive, Akt/eNOS and Ca2+ signaling pathways in monocyte adhesion to ECs independent of the ox-LDL,LOX-1 axis. J. Cell. Physiol. 220: 706,715, 2009. © 2009 Wiley-Liss, Inc. [source] Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cellsJOURNAL OF NEUROCHEMISTRY, Issue 5 2010Pei-Chun Wu J. Neurochem. (2010) 112, 1210,1222. Abstract In the present study, we characterized the Ca2+ responses and secretions induced by various secretagogues in mouse chromaffin cells. Activation of the acetylcholine receptor (AChR) by carbachol induced a transient intracellular Ca2+ concentration ([Ca2+]i) increase followed by two phases of [Ca2+]i decay and a burst of exocytic events. The contribution of the subtypes of AChRs to carbachol-induced responses was examined. Based on the results obtained by stimulating the cells with the nicotinic receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, high K+ and the effects of thapsigargin, it appears that activation of nAChRs induces an extracellular Ca2+ influx, which in turn activate Ca2+ -induced Ca2+ release via the ryanodine receptors. Muscarine, a muscarinic receptor (mAChRs) agonist, was found to induce [Ca2+]i oscillation and sustained catecholamine release, possibly by activation of both the receptor- and store-operated Ca2+ entry pathways. The RT-PCR results showed that mouse chromaffin cells are equipped with messages for multiple subtypes of AChRs, ryanodine receptors and all known components of the receptor- and store-operated Ca2+ entry. Furthermore, results obtained by directly monitoring endoplasmic reticulum (ER) and mitochondrial Ca2+ concentration and by disabling mitochondrial Ca2+ uptake suggest that the ER acts as a Ca2+ source, while the mitochondria acts as a Ca2+ sink. Our results show that both nAChRs and mAChRs contribute to the initial carbachol-induced [Ca2+]i increase which is further enhanced by the Ca2+ released from the ER mediated by Ca2+ -induced Ca2+ release and mAChR activation. This information on the Ca2+ signaling pathways should lay a good foundation for future studies using mouse chromaffin cells as a model system. [source] |