| |||
CXCR4 Expression (cxcr4 + expression)
Selected AbstractsUp-regulation of leukocyte CXCR4 expression by sulfatide: An L-selectin-dependent pathway on CD4+ T cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2007Pascal Duchesneau Abstract CXCR4 plays significant roles in immune and inflammatory responses and is important for selective recruitment of leukocytes. We previously showed that CXCR4 surface expression of human lymphocytes was affected by sulfatide, an in vivo ligand for L-selectin. Increased CXCR4 expression was shown to promote biologically relevant functions such as integrin-dependent adhesion and transmigration. Here, we show that sulfatide-induced CXCR4 up-regulation also occurs on other leukocyte subsets in humans and mice. B cells and CD4+CD25+ T cells had the highest CXCR4 up-regulation after sulfatide stimulation. Transfection of L-selectin was sufficient for K562 cells to acquire sulfatide-induced CXCR4 up-regulation, while analysis of L-selectin knockout mice revealed that this response was critically L-selectin dependent only for CD4+ T cells, suggesting an alternative pathway in CD8+ T cells and B cells. Sulfatide triggered several intracellular signaling events in CD4+ T cells, but only tyrosine kinase activation, including members of the Src family, were essential for L-selectin to CXCR4 signaling. CXCR4 up-regulation was rapid, enhanced CXCL12-induced signaling and increased chemotaxis toward CXCL12, and therefore has potentially important roles in vivo. Thus, the response to CXCL12 depends in part on tissue expression of sulfatide and, specifically in CD4+ T cells, also depends on the surface level of L-selectin. [source] Post-translational and cell type-specific regulation of CXCR4 expression by cytokinesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2003Hilke Brühl Abstract We have investigated the regulation and function of the chemokine receptor CXCR4 on neutrophils. CXCR4 is hardly detectable on neutrophils in the peripheral blood. However, overnight culture strongly up-regulates CXCR4 expression on the cell surface. The functional activity of CXCR4 on cultured neutrophils was confirmed by stromal cell-derived factor (SDF)-induced migration and up-regulation of the integrins CD11b and CD11c. CXCR4 surface expression on neutrophils but not on lymphocytes and monocytes is rapidly down-regulated after stimulation with TNF-, and IFN-,, resulting in significantly decreased SDF-induced functional responses of neutrophils. In contrast to surface expression, CXCR4 mRNA expression was several-fold increased in cytokine-stimulated neutrophils, suggesting a post-translational regulation. By confocal microscopy we demonstrate that CXCR4 is internalized after stimulation with TNF-, and IFN-,. The down-modulation of CXCR4 surface expression in response to TNF-, and IFN-, was fully reversible after cytokine removal. Further, CXCR4 down-modulation could be completely blocked by hypertonic sucrose and significantly reduced by chlorpromazine indicating the involvement of clathrin-coated pits. Internalization of CXCR4 by cytokines in a cell type-specific manner is a novel and functionally important mechanism of chemokine receptor regulation. [source] Characterization of the migration of lung and blood T cells in response CXCL12 in a three-dimensional matrixIMMUNOLOGY, Issue 4 2010Caroline E. Day Summary The ability of T cells to microlocalize within tissues, such as the lung, is crucial for immune surveillance and increased T-cell infiltration is a feature of many inflammatory lung conditions. T-cell migration has mainly been studied in two-dimensional assays. Using three-dimensional collagen gels to mimic the extracellular matrix of lung tissue, we have characterized the migration of T lymphocytes isolated from peripheral blood (PBT) and lung (LT) in response to interleukin-2 (IL-2) and CXCL12. Freshly isolated PBT and LT showed a low degree of migration (blood 4·0 ± 1·3% and lung 4·1 ± 1·7%). Twenty-four hours of culture increased the percentage of migrating PBT and LT (blood 17·5 ± 2·9% and lung 17·7 ± 3·8%). The IL-2 stimulation modestly increased migration of PBT after 6 days (32·3 ± 6·0%), but had no effect on the migration of LT (25·5 ± 3·2%). Twenty-four hours of stimulation with anti-CD3/CD28 caused a small but significant increase in the migration of PBT (to 36·4 ± 5·8%). In a directional three-dimensional assay, CXCL12 failed to induce migration of fresh PBT or LT. Twenty-four hours of culture, which increased CXCR4 expression of PBT 3·6-fold, significantly increased the migration of PBT in response to CXCL12. Migration of PBT to CXCL12 was blocked by pertussis toxin, but not by the phosphoinositide 3-kinase inhibitor wortmannin. Twenty-four-hour cultured LT did not respond to CXCL12. CD3/CD28-stimulation inhibited CXCL12-mediated migration of PBT. These results suggest that the migration pattern of PBT is distinct from that of LT. [source] CXCL12 Is a constitutive and inflammatory chemokine in the intestinal immune systemINFLAMMATORY BOWEL DISEASES, Issue 4 2010Iris Dotan MD Abstract Background: Inflammatory bowel disease (IBD) is characterized by increased lymphocytic infiltrate to the lamina propria (LP) and upregulation of inflammatory chemokines and receptors. CXCL12 is a constitutive chemokine involved in lung, brain, and joint inflammation. We hypothesized that CXCL12 and its receptor, CXCR4, would have a constitutive and inflammatory role in the gut. Methods: Intestinal epithelial cells (IECs) and T lymphocytes were isolated from intestinal mucosa of IBD and control patients undergoing bowel resection. Autologous T cells were isolated from peripheral blood (PB). CXCL12 and CXCR4 expression by IECs was assessed by polymerase chain reaction and immunohistochemistry, lymphocyte phenotype by flow cytometry, and migration by Transwells. Results: IECs expressed CXCL12 and expression was increased and more diffuse in IBD compared to normal crypts (ulcerative colitis [UC] > Crohn's disease [CD], inflamed > noninflamed). CXCR4 was expressed by IECs, LP T cells (LPTs), and PB T cells (PBTs), and CXCR4+ cells were increased in IBD LP in situ. PBTs and LPTs from all patients had a high and comparable migration toward CXCL12 (P < 0.0001 and P < 0.05 vs. medium, respectively). Migration toward IBD-IEC-derived supernatant was significantly higher compared to normal. Antibodies against CXCR4 and CXCL12 blocked migration. Conclusions: CXCL12 is expressed by normal IECs and upregulated and differentially distributed in IBD IECs. CXCR4 is expressed by IECs and LPTs, and CXCR4+ cells are significantly increased in IBD LP. CXCL12 is chemotactic for both PBTs and LPTs. Thus, CXCL12 and CXCR4 have a constitutive and inflammatory role in the intestinal mucosa and their selective therapeutic manipulation may be considered in IBD management. (Inflamm Bowel Dis 2009;) [source] Alteration of CXCR4 expression and Th1/Th2 balance of peripheral CD4-positive T cells can be a biomarker for leukocytapheresis therapy for patients with refractory ulcerative colitisINFLAMMATORY BOWEL DISEASES, Issue 7 2009Hiroshi Nakase MD No abstract is available for this article. [source] CXCR4-independent rescue of the myeloproliferative defect of the gata1low myelofibrosis mouse model by Aplidin®,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010Maria Verrucci The discovery of JAK2 mutations in Philadelphia-negative myeloproliferative neoplasms has prompted investigators to evaluate mutation-targeted treatments to restore hematopoietic cell functions in these diseases. However, the results of the first clinical trials with JAK2 inhibitors are not as promising as expected, prompting a search for additional drugable targets to treat these disorders. In this paper, we used the hypomorphic Gata1low mouse model of primary myelofibrosis (PMF), the most severe of these neoplasms, to test the hypothesis that defective marrow hemopoiesis and development of extramedullary hematopoiesis in myelofibrosis is due to insufficient p27Kip1 activity and is treatable by Aplidin®, a cyclic depsipeptide that activates p27Kip1 in several cancer cells. Aplidin® restored expression of Gata1 and p27Kip1 in Gata1low hematopoietic cells, proliferation of marrow progenitor cells in vitro and maturation of megakaryocytes in vivo (reducing TGF-,/VEGF levels released in the microenvironment by immature Gata1low megakaryocytes). Microvessel density, fibrosis, bone growth, and marrow cellularity were normal in Aplidin®-treated mice and extramedullary hematopoiesis did not develop in liver although CXCR4 expression in Gata1low progenitor cells remained low. These results indicate that Aplidin® effectively alters the natural history of myelofibrosis in Gata1low mice and suggest this drug as candidate for clinical evaluation in PMF. J. Cell. Physiol. 225: 490,499, 2010. © 2010 Wiley-Liss, Inc. [source] Optimization of in vitro expansion of macaque CD4+ T cells using anti-CD3 and co-stimulation for autotransfusion therapyJOURNAL OF MEDICAL PRIMATOLOGY, Issue 4-5 2006Nattawat Onlamoon Abstract Background, Our laboratory has previously shown that adoptive transfer of in vitro -expanded autologous purified polyclonal CD4+ T cells using anti-CD3/CD28-coated beads induced antiviral responses capable of controlling SIV replication in vivo. Methods, As CD4+ T cells comprise several phenotypic and functional lineages, studies were carried out to optimize the in vitro culture conditions for maximal CD4+ T-cell expansion, survival and delineate the phenotype of these expanded CD4+ T cells to be linked to maximal clinical benefit. Results and Conclusions, The results showed that whereas anti-monkey CD3,/, was able to induce T-cell proliferation and expansion in combination with antibodies against multiple co-stimulatory molecules, monkey CD3, cross reacting antibodies failed to induce proliferation of macaque CD4+ T cells. Among co-stimulatory signals, anti-CD28 stimulation was consistently superior to anti-4-1BB, CD27 or ICOS while the use of anti-CD154 failed to deliver a detectable proliferation signal. Increasing the relative anti-CD28 co-stimulatory signal relative to anti-CD3 provided a modest enhancement of expansion. Additional strategies for optimization included attempts to neutralize free radicals, enhancement of glucose uptake by T cells or addition of T-cell stimulatory cytokines. However, none of these strategies provided any detectable proliferative advantage. Addition of 10 autologous irradiated feeder cells/expanding T cell provided some enhancement of expansion; however, given the high numbers of T cell needed, this approach was deemed impractical and costly, and lower ratios of feeder to expanding T cells failed to provide such benefit. The most critical parameter for efficient expansion of purified CD4+ T cells from multiple monkeys was the optimization of space and culture conditions at culture inception. Finally, anti-CD3/28-expanded CD4+ T cells uniformly exhibited a central memory phenotype, absence of CCR5 expression, marked CXCR4 expression in vitro, low levels of caspase 3 but also of Bcl-2 expression. [source] Expression of CXCL12 and its receptor CXCR4 correlates with lymph node metastasis in submucosal esophageal cancerJOURNAL OF SURGICAL ONCOLOGY, Issue 5 2008Ken Sasaki MD Abstract Background and Objectives The chemokine CXCL12 and its receptor CXCR4 are involved in cell migration, proliferation, and angiogenesis, and promote organ-specific localization of distant metastases in various carcinomas. We examined their expression and microvessel density (MVD) in submucosal esophageal squamous cell carcinoma (ESCC) and analyzed their connection to clinicopathological findings including lymph node micrometastasis (LMM). Methods Eighty-six patients with submucosal ESCC underwent curative resection from 1985 to 2002. Immunohistochemical staining of CXCL12, CXCR4, and CD34 was performed with primary tumors, and staining of cytokeratin was performed with dissected lymph nodes. MVD was calculated from CD34 expression, and LMM detected by cytokeratin staining. Results Expression of CXCL12, but not CXCR4, correlated with lymph node metastasis. There was no significant correlation between the expression of CXCL12 and/or CXCR4 and MVD. LMM was detected in 8 cases and 14 lymph nodes. CXCL12 expression and high MVD were found in tumors with lymph node metastasis including LMM. Furthermore, in the CXCR4-positive tumors, positive CXCL12 expression was more significantly correlated with lymph node metastasis and/or LMM than negative CXCL12 expression. Conclusions Evaluation of CXCL12 and CXCR4 expression should assist detection of lymph node metastasis including LMM in submucosal ESCC. J. Surg. Oncol. 2008;97:433,438. © 2008 Wiley-Liss, Inc. [source] The Chemokine Receptor CXCR4 is More Frequently Expressed in Breast Compared to Other Metastatic Adenocarcinomas in EffusionsTHE BREAST JOURNAL, Issue 5 2008Ben Davidson MD Abstract:, This objective of this study was to investigate the expression of chemokine receptors in tumor cells and leukocytes in breast carcinoma effusions. The expression of leukocyte markers (CD3/4/8/14/16/19) and chemokine receptors (CXCR1/4, CCR2/5/7) was studied in 21 breast carcinoma effusions using flow cytometry. Breast carcinoma cells expressed CXCR4 in 7/21 (33%) effusions, with less frequent expression of CXCR1, CCR5, and CCR7. CXCR2 and CCR2 were absent. Lymphocytes showed frequent CXCR4, CCR5, and CCR7 expression, while CXCR1, CXCR2, CCR2 were rarely or never detected. Macrophages expressed all six receptors except for CXCR2. Comparative analysis of breast carcinoma effusions with previously studied ovarian and cervical/endometrial adenocarcinomas (ACs) showed significantly higher CXCR4 expression in breast carcinoma cells compared to the other gynecological ACs (p = 0.001). Breast and cervical/endometrial carcinoma effusions showed different expression of chemokine receptors in lymphocytes (lower CXCR1, higher CXCR4 and CCR7 levels; p = 0.012, p = 0.005, p < 0.001, respectively) and macrophages (higher CCR7 levels; p < 0.001), as well as lower CD8 counts (p < 0.001) and higher CD19 counts (p = 0.001) compared to ovarian carcinoma effusions. Higher numbers of CD8-positive lymphocytes (p = 0.080) and higher CCR7 monocyte expression (p = 0.087) were associated with a trend for shorter disease-free survival. In conclusion, breast carcinoma cells express CXCR4, a unique feature among metastatic ACs in effusions, with rare expression of other chemokine receptors. Chemokine receptor expression in leukocytes and lymphocyte counts significantly differ from those of ovarian carcinoma effusions. The prognostic role of CCR7 expression in monocytes and CD8 counts in breast carcinoma effusions merits further research. [source] Clinical and biological significance of CXCL12 and CXCR4 expression in adult testes and germ cell tumours of adults and adolescents,THE JOURNAL OF PATHOLOGY, Issue 1 2009DC Gilbert Abstract Interaction between the chemokine CXCL12 (SDF1) and the G-protein coupled receptor CXCR4 is responsible for the maintenance of adult stem cell niches and is known to play an important role in utero in the migration of primordial germ cells. We demonstrate expression of CXCL12 by Sertoli cells and confirm CXCR4 expression by the germ cell population of the adult human testes. CXCR4 is also known to mediate organ-specific patterns of metastases in a range of common cancers. We identify consistent expression of CXCR4 mRNA and protein in testicular germ cell tumours (TGCT) that accounts for their patterns of relapse in sites of known CXCL12 expression. Extragonadal primary germ cell tumours express CXCR4 and their sites of occurrence are coincident with areas of known CXCL12 expression in utero. We show that CXCL12 stimulates the invasive migration of a TGCT cell line in vitro in a CXCR4-dependent fashion and activates ERK. Furthermore, we demonstrate that expression of CXCL12 in stage I non-seminomas is significantly associated with organ-confined disease post-orchidectomy and reduced risk of relapse (p = 0.003). This may be through the loss of CXCL12 gradients that might otherwise attract cells away from the primary tumour. We propose CXCL12 expression as a potential predictor of subsequent relapse that could lead to avoiding unnecessary treatment and associated late toxicities. Our observations support a role for CXCL12/CXCR4 in the adult germ cell population and demonstrate pathological function in germ cell tumour development and metastasis that may have clinical utility. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Involvement of E-cadherin, ,-catenin, Cdc42 and CXCR4 in the progression and prognosis of cutaneous melanomaBRITISH JOURNAL OF DERMATOLOGY, Issue 6 2007M.G. Tucci Summary Background, A key event in cancer metastasis is the migration of tumour cells from their original location to a secondary site. The development of melanoma may be viewed as a consequence of the disruption of homeostatic mechanisms in the skin of the original site. Objectives, To investigate whether dysregulation of cell motility (Cdc42 expression), escaping the control of cell,cell and cell,matrix interactions (E-cadherin, ,-catenin expression), enhances melanoma progression, and whether chemokine receptors (CXCR4) mediate cell migration and activation during invasion and metastasis development. Methods, The immunohistochemical expression of Cdc42, E-cadherin, ,-catenin and CXCR4 was investigated in 30 patients with surgically treated nodular melanoma, 18 alive and disease free and 12 with a fatal outcome due to metastatic disease. Results, E-cadherin expression was significantly reduced (P < 0·05) and cytoplasmic ,-catenin was increased in the patients who had died compared with disease-free individuals, while membrane expression of ,-catenin was similar in the two groups. Patients with fatal outcome had increased Cdc42 (P < 0·01) and CXCR4 (P < 0·05). In this group a positive correlation was found between melanocytic Cdc42 expression and Breslow thickness (r = 0·598, P < 0·05) and between CXCR4 expression and Breslow thickness (r = 0·583, P < 0·05). Conclusions, Findings suggest that primary cutaneous melanoma with a high Breslow thickness is characterized by tumour cells with high motility and invasion ability, in line with the hypothesis that low E-cadherin levels and overexpression of Cdc42 and CXCR4 could be prognostic markers of poor outcome. [source] Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemiaBRITISH JOURNAL OF HAEMATOLOGY, Issue 3 2000Robert Möhle The chemokine stromal cell-derived factor-1 (SDF-1) that is released by bone marrow (BM) stromal cells and contributes to stem cell homing may also play a role in the trafficking of leukaemic cells. We analysed SDF-1-induced intracellular calcium fluxes in leukaemic blasts from the peripheral blood of patients with newly diagnosed acute myeloid leukaemia (AML) and lymphoblastic leukaemia (B-lineage ALL), determined the effect of BM stromal cell-conditioned medium on in vitro transendothelial migration (TM) and measured expression of the SDF-1 receptor, CXCR4, by flow cytometry. AML FAB M1/2 blasts did not show calcium fluxes and TM was not stimulated. In myelomonocytic AML (M4/5), however, SDF-1 induced significant calcium fluxes and TM was increased twofold by the conditioned medium. M3 and M4 blasts with eosinophilia (M4eo) showed intermediate activity and M6 blasts showed no functional activity. In ALL, strong calcium fluxes and increased TM (2.5-fold) were observed. Accordingly, expression of CXCR4 was low in undifferentiated (M0) AML, myeloid (M1/2) AML and erythroid (M6) AML, but high [mean fluorescence (MF) > 50] in promyelocytic (M3) AML, myelomonocytic (M4/5) AML and B-lineage ALL. We conclude that, in AML, SDF-1 is preferentially active in myelomonocytic blasts as a result of differentiation-related expression of CXCR4. Functional activity of SDF-1 and high expression of CXCR4 in B-lineage ALL is in accordance with the previously described activity of SDF-1 in early B cells. SDF-1 may contribute to leukaemic marrow infiltration, as suggested by increased CXCR4 expression and migratory response in BM-derived blasts compared with circulating cells. [source] Cell proliferation of human bone marrow mesenchymal stem cells on biodegradable microcarriers enhances in vitro differentiation potentialCELL PROLIFERATION, Issue 5 2010L.-Y. Sun Objectives:, For reasons of provision of highly-specific surface area and three-dimensional culture, microcarrier culture (MC) has garnered great interest for its potential to expand anchorage-dependent stem cells. This study utilizes MC for in vitro expansion of human bone marrow mesenchymal stem cells (BMMSCs) and analyses its effects on BMMSC proliferation and differentiation. Materials and methods:, Effects of semi-continuous MC compared to control plate culture (PC) and serial bead-to-bead transfer MC (MC bead-T) on human BMMSCs were investigated. Cell population growth kinetics, cell phenotypes and differentiation potential of cells were assayed. Results:, Maximum cell density and overall fold increase in cell population growth were similar between PCs and MCs with similar starting conditions, but lag period of BMMSC growth differed substantially between the two; moreover, MC cells exhibited reduced granularity and higher CXCR4 expression. Differentiation of BMMSCs into osteogenic and adipogenic lineages was enhanced after 3 days in MC. However, MC bead-T resulted in changes in cell granularity and lower osteogenic and adipogenic differentiation potential. Conclusions:, In comparison to PC, MC supported expansion of BMMSCs in an up-scalable three-dimensional culture system using a semi-continuous process, increasing potential for stem cell homing ability and osteogenic and adipogenic differentiation. [source] |