| |||
Cx43 Expression (cx43 + expression)
Selected AbstractsEnhanced Connexin 43 immunoreactivity in penumbral areas in the human brain following ischemiaGLIA, Issue 5 2006Taizen Nakase Abstract Astrocytes support neurons not only physically but also chemically by secreting neurotrophic factors and energy substrates. Moreover, astrocytes establish a glial network and communicate through gap junctions in the brain. Connexin 43 (Cx43) is one of major component proteins in astrocytic gap junctions. Heterozygote Cx43 KO mice and astrocyte specific Cx43 KO mice exhibited amplified brain damage after ischemic insults, suggesting a neuroprotective role for astrocytic gap junctions. However, some reports mentioned unfavorable effects of gap junctions in neuronal support. Therefore, the role of astrocytic gap junctions under ischemic condition remains controversial. Since these studies have been performed using animal models, we investigated the Cx43 expression in human brain after stroke. Brain slice sections were prepared from pathological samples in our hospital. Embolic stroke brains sectioned because of the stroke were considered as acute ischemic models. Multiple infarction brains sectioned because of pneumonia or cancer were considered as chronic models. We observed the levels of Cx43 in both lesioned and intact areas, and compared them with acute and chronic models. As the results, astrocytes were strongly activated in penumbral lesions both of acute and chronic ischemic models. The Cx43 immunoreactivity was significantly amplified in the penumbra of chronic model compared to that of the acute model. Neurons were well preserved in chronic model compared to acute model. These findings suggested that the brain may generate neuronal protection by increasing the levels of Cx43 and amplifying the astrocytic gap junctional intercellular communication under hypoxic condition. © 2006 Wiley-Liss, Inc. [source] Impulse conduction and gap junctional remodelling by endothelin-1 in cultured neonatal rat ventricular myocytesJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2009Y. Reisner Abstract Endothelin-1 (ET-1) is an important contributor to ventricular hypertrophy and failure, which are associated with arrhythmogenesis and sudden death. To elucidate the mechanism(s) underlying the arrhythmogenic effects of ET-1 we tested the hypothesis that long-term (24 hrs) exposure to ET-1 impairs impulse conduction in cultures of neonatal rat ventricular myocytes (NRVM). NRVM were seeded on micro-electrode-arrays (MEAs, Multi Channel Systems, Reutlingen, Germany) and exposed to 50 nM ET-1 for 24 hrs. Hypertrophy was assessed by morphological and molecular methods. Consecutive recordings of paced activation times from the same cultures were conducted at baseline and after 3, 6 and 24 hrs, and activation maps for each time period constructed. Gap junctional Cx43 expression was assessed using Western blot and confocal microscopy of immunofluorescence staining using anti-Cx43 antibodies. ET-1 caused hypertrophy as indicated by a 70% increase in mRNA for atrial natriuretic peptide (P < 0.05), and increased cell areas (P < 0.05) compared to control. ET-1 also caused a time-dependent decrease in conduction velocity that was evident after 3 hrs of exposure to ET-1, and was augmented at 24 hrs, compared to controls (P < 0.01). ET-1 increased total Cx43 protein by ,40% (P < 0.05) without affecting non- phosphorylated Cx43 (NP-Cx43) protein expression. Quantitative confocal microscopy showed a ,30% decrease in the Cx43 immunofluorescence per field in the ET-1 group (P < 0.05) and a reduced field stain intensity (P < 0.05), compared to controls. ET-1-induced hypertrophy was accompanied by reduction in conduction velocity and gap junctional remodelling. The reduction in conduction velocity may play a role in ET-1 induced susceptibility to arrhythmogenesis. [source] Gap junctional communication in human osteoclasts in vitro and in vivoJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6a 2008A. F. Schilling Abstract Bone-forming cells are known to be coupled by gap junctions, formed primarily by connexin43 (Cx43). The role of Cx43 in osteoclasts has so far only been studied in rodents, where Cx43 is important for fusion of mononuclear precursors to osteoclasts. Given the potential importance for human diseases with pathologically altered osteoclasts, we asked whether a similar influence of Cx43 can also be observed in osteoclasts of human origin. For this purpose, Cx43 mRNA expression was studied in a time course experiment of human osteoclast differentiation by RT-PCR. Localization of Cx43 in these cells was determined by immunohistochemistry and confocal microscopy. For the assessment of the effect of gap junction inhibition on cell fusion, gap junctions were blocked with heptanol during differentiation of the cells and the cells were then evaluated for multinuclearity. Paraffin sections of healthy bone and bone from patients with Paget's disease and giant cell tumour of the bone were used to study Cx43 expression in vivo. We found mRNA and protein expression of Cx43 in fully differentiated osteoclasts as well as in precursor cells. This expression decreased in the course of differentiation. Consistently, we found a lower expression of Cx43 in osteoclasts than in bone marrow precursor cells in the histology of healthy human bone. Blockade of gap junctional communication by heptanol led to a dose-dependent decrease in multinuclearity, suggesting that gap junctional communication precedes cell fusion of human osteoclasts. Indeed, we found a particularly strong expression of Cx43 in the giant osteoclasts of patients with Paget's disease and giant cell tumour of the bone. These results show that gap junctional communication is important for fusion of human mononuclear precursor cells to osteoclasts and that gap junctional Cx43 might play a role in the regulation of size and multinuclearity of human osteoclasts in vivo. [source] Mechanical load induced by glass microspheres releases angiogenic factors from neonatal rat ventricular myocytes cultures and causes arrhythmiasJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5b 2008D. Y. Barac Abstract In the present study, we tested the hypothesis that similar to other mechanical loads, notably cyclic stretch (simulating pre-load), glass microspheres simulating afterload will stimulate the secretion of angiogenic factors. Hence, we employed glass microspheres (average diameter 15.7 ,m, average mass 5.2 ng) as a new method for imposing mechanical load on neonatal rat ventricular myocytes (NRVM) in culture. The collagen-coated microspheres were spread over the cultures at an estimated density of 3000 microspheres/mm2, they adhered strongly to the myocytes, and acted as small weights carried by the cells during their contraction. NRVM were exposed to either glass microspheres or to cyclic stretch, and several key angiogenic factors were measured by RT-PCR. The major findings were: (1) In contrast to other mechanical loads, such as cyclic stretch, microspheres (at 24 hrs) did not cause hypertrophy. (2) Further, in contrast to cyclic stretch, glass microspheres did not affect Cx43 expression, or the conduction velocity measured by means of the Micro-Electrode-Array system. (3) At 24 hrs, glass microspheres caused arrhythmias, probably resulting from early afterdepolarizations. (4) Glass microspheres caused the release of angiogenic factors as indicated by an increase in mRNA levels of vascular endothelial growth factor (80%), angiopoietin-2 (60%), transforming growth factor-, (40%) and basic fibroblast growth factor (15%); these effects were comparable to those of cyclic stretch. (5) As compared with control cultures, conditioned media from cultures exposed to microspheres increased endothelial cell migration by 15% (P<0.05) and endothelial cell tube formation by 120% (P<0.05), both common assays for angiogenesis. In conclusion, based on these findings we propose that loading cardiomyocytes with glass microspheres may serve as a new in vitro model for investigating the role of mechanical forces in angiogenesis and arrhythmias. [source] TGF-, induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathwaysJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2008Charlotte Tacheau One of the shared physiological roles between TGF-, and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-,1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-,1 plays a key role in the control of NMuMG cells proliferation by TGF-,1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-,1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-,1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-,1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-,1-induced Cx43 gene expression. J. Cell. Physiol. 217: 759,768, 2008. © 2008 Wiley-Liss, Inc. [source] Connexin 43 gap junction proteins are up-regulated in remyelinating spinal cordJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2007W.A. Roscoe Abstract Alterations in the expression of gap junction proteins have previously been observed in several diseases affecting the central nervous system; however, the status of connexin 43 (Cx43) has not yet been reported in spinal cord remyelination. We studied Cx43 expression in demyelination and remyelination by using a chronic guinea pig model of experimental allergic encephalomyelitis (EAE). Hartley guinea pigs were immunized with homogenized whole CNS and complete Freund's adjuvant. Animals became chronically ill by day 40 postimmunization, and animals with paralysis were entered into the study. Animals were treated on days 40,60 postimmunization with either saline or drugs that promote remyelination: an adenosine amine congener (100 ,g/kg), an anti-,4-integrin blocker (CT301; ELN 69299; 30 mg/kg), or a combination of both drugs. Remyelination was induced in all drug-treated groups. Cx43 expression was virtually absent in demyelinated lesions of saline-treated controls compared with healthy tissue and normal appearing white matter (P < 0.001), whereas Cx43 was considerably increased (300,500%) in remyelinating lesions of all treatment groups (P < 0.001), most notably in CT301-treated animals. These changes in Cx43 expression indicate that Cx43 may beimportant for recovery from neuroinflammation. © 2007 Wiley-Liss, Inc. [source] ACTH and adrenocortical gap junctionsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2003Sandra A. Murray Abstract Since the initial identification of gap junctions in the adrenal gland, it has been proposed that a system involving direct cell,cell communication might be involved in adrenal cortical functions. Gap junction channels do, in fact, provide pathways for direct intercellular exchange of small molecules (<1,000 Da), many of which have the potential to influence a wide range of cellular activities. Gap junctions are composed of proteins called connexin which, in the adrenal cortex, have proven to be remarkably consistent in both type and zonal distribution with connexin 43 (Cx43) as the predominant component in mammalian adrenal glands thus far evaluated. Only the inner two zones of the cortex (zonae fasciculata and reticularis) exhibit significant amounts of Cx43 and functional coupling. Adrenocorticotropin (ACTH) has been shown to increase Cx43 protein in vivo and in vitro, and a strong correlation has been noted between the presence of gap junctions and certain adrenal cortical functions, especially steroidogenic capacity and cell proliferation. This review summarizes evidence of the Cx43 expression in adrenal cortical cells and the likely role of Cx43 in steroidogenesis and cell proliferation. It is concluded that control of gap junction expression in the adrenal gland is hormonally dependent and is functionally linked to adrenal gland zonation. Microsc. Res. Tech. 61:240,246, 2003. © 2003 Wiley-Liss, Inc. [source] Nature, significance, and mechanisms of electrical heterogeneities in ventricleTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2004Steven Poelzing Abstract Previously, dispersion of repolarization (DOR) has been extensively linked to the development of arrhythmias and sudden cardiac death. The electrical heterogeneities that cause DOR between transmural myocyte layers have been reported in a wide variety of animals and humans. The underlying causes of transmural electrical heterogeneities are in part due to heterogeneous functional expression of proteins responsible for ion handling. Recently, we found that electrophysiologic heterogeneities between subepicardial and midmyocardial cells can form a substrate for reentrant ventricular arrhythmias. However, cell-to-cell coupling through gap junctions is expected to attenuate transmural heterogeneities between cell types spanning the ventricular wall. In this article we review a hypothesis that regional uncoupling resulting from expression patterns of gap junctions across the ventricular wall underlies DOR, and DOR can be amplified under disease conditions which remodel gap junctions. We find the principle gap junction protein, connexin43 (Cx43), is selectively reduced in the subepicardium (by 24%) compared to deeper layers of normal canine left ventricle. Additionally, the greatest DOR occurs within the subepicardial-midmyocardial interface, precisely where Cx43 expression is reduced. The present data suggests that ion channel and gap junction heterogeneities act in conjunction to form and maintain transmural DOR. Importantly, both ion channel and gap junction remodeling occurs during many disease states such as heart failure. Importantly, in the absence of ion channel remodeling, pharmacological uncoupling increases transmural DOR, particularly within the epicardial-midmyocardial interface, to values observed in heart failure. Therefore, these data suggest that heterogeneous Cx43 expression produces functionally significant electrophysiologic heterogeneities across the ventricular wall and may be a mechanism for promoting DOR which underlie arrhythmias in heart failure. © 2004 Wiley-Liss, Inc. [source] Alterations in connexin expression in the bladder of patients with urge symptomsBJU INTERNATIONAL, Issue 4 2005Jochen Neuhaus OBJECTIVE To compare the formation of gap junctions between detrusor smooth muscle cells in situ and the distribution of connexin (Cx)40, Cx43 and Cx45 expressions in bladder biopsies from a control group (with bladder tumour) and from patients with urge symptoms, as smooth muscle cells of the human detrusor muscle communicate via gap junctions and express several connexin subtypes, alterations of which may be involved in the causes of lower urinary tract symptoms. MATERIALS AND METHODS Connexin expression is prominent in myofibroblast-like cells, supposedly involved in afferent signalling pathways of the bladder. Their strategic position directly beneath the urothelium suggests they are a link between urothelial ATP signalling during bladder filling and afferent A,-fibre stimulation for co-ordination of bladder tonus and initialization of the micturition reflex. Modification of their coupling characteristics may have profound impact on bladder sensation. Bladder tissue probes of patients undergoing cystectomy or transurethral tumour resection for bladder cancer were used as controls. Tissue samples from patients with severe idiopathic urge symptoms were taken for exclusion diagnostics of interstitial cystitis (IC) and carcinoma in situ. The formation of functional syncytia between detrusor smooth muscle cells were examined in dye-coupling experiments by injecting with Lucifer Yellow. The morphology and structure of gap junctions were assessed by transmission electron microscopy and immunogold labelling of Cx43 and Cx45. The expression of connexin subtypes Cx40, Cx43 and Cx45 was compared by indirect immunofluorescence, and confocal laser scanning microscopy used for semiquantitative analysis. RESULTS There was dye coupling between smooth muscle cells of the detrusor in situ. Electron microscopy and immunogold labelling showed very small gap junctional plaques. These findings were confirmed by confocal immunofluorescence. Semiquantitative analyses showed significantly higher Cx43 expression in the detrusor muscle, and a tendency to higher Cx45 expression in the suburothelial layer associated with urge symptoms, whereas Cx40 expression was unaffected. CONCLUSIONS Smooth muscle cells of the human detrusor muscle are coupled by classical gap junctions, forming limited local functional syncytia. Both Cx43 and Cx45 are expressed at low levels in normal detrusor. Up-regulation of Cx43 in patients with urge incontinence supports the possibility of functional changes in the syncytial properties of detrusor smooth muscle cells in this condition. In addition, the observed increase of Cx45 in the myofibroblast cell layer supports the idea that alterations in sensory signalling are also involved. Comparison with previous reports implies that the pathophysiology of urgency is distinct from that of the unstable bladder and other forms of incontinence. [source] Stimulation of cardiac ,-adrenoceptors targets connexin 43BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2009Kerstin Boengler Connexin 43 (Cx43) is the major protein of cardiac ventricular gap junctions and is crucial to cell,cell communication and cardiac function. The protein level of Cx43 is reduced in patients with heart failure or dilated cardiomyopathy (DCM), pathophysiological conditions often associated with arrhythmias. As catecholamines are often increased in cardiac diseases, Salameh et al., in this issue of the BJP, investigated the effect of ,-adrenoceptor stimulation of neonatal cardiomyocytes on Cx43 expression and found increased Cx43 mRNA and protein levels following 24 h stimulation. Up-regulation of Cx43 was associated with phosphorylation of mitogen-activated protein kinases and translocation of transcription factors into the nucleus. In patients with DCM, a situation often associated with desensitization of the ,-adrenoceptor system, Cx43 expression was reduced. The characterization of the signal transduction pathways involved in Cx43 expression and intracellular localization in human myocardium in vivo is a promising target for the development of new anti-arrhythmic strategies. [source] The signal transduction cascade regulating the expression of the gap junction protein connexin43 by ,-adrenoceptorsBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2009A Salameh Background and purpose:, In mammalian heart, connexin43 (Cx43) represents the predominant connexin in the working myocardium. As the ,-adrenoceptor is involved in many cardiac diseases, we wanted to clarify the pathway by which ,-adrenoceptor stimulation may control Cx43 expression. Experimental approach:, Cultured neonatal rat cardiomyocytes were stimulated with isoprenaline. Cx43 expression as well as activation of p38 mitogen-activated protein kinase (MAPK), p42/44 MAPK, JUN NH2 -terminal kinase (JNK) and nuclear translocation of the transcription factors activator protein 1 (AP1) and CRE-binding protein (CREB) were investigated. Additionally, we assessed Cx43 expression and distribution in left ventricular biopsies from patients without any significant heart disease, and from patients with either congestive heart failure [dilated cardiomyopathy (DCM)] or hypertrophic cardiomyopathy (HCM). Key results:, Isoprenaline exposure caused about twofold up-regulation of Cx43 protein with a pEC50 of 7.92 ± 0.11, which was inhibited by propranolol, SB203580 (4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)-1H-imidazole) (p38 inhibitor), PD98059 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one) (MAPK 1 kinase inhibitor) (Alexis Biochemicals, San Diego, CA, USA) or cyclosporin A. Similar findings were obtained for Cx43 mRNA. Furthermore, Cx43 up-regulation was accompanied by phosphorylation of p38, p42/44 and JNK, and by translocation of AP1 and CREB to the nucleus. Analysis of Cx43 protein and mRNA in ventricular biopsies revealed that in patients with DCM, Cx43 content was significantly lower, and in patients with HCM, Cx43 content was significantly higher, relative to patients without any cardiomyopathy. More importantly, Cx43 distribution also changed with more Cx43 being localized at the lateral border of the cardiomyocytes. Conclusion and implication:, ,-adrenoceptor stimulation up-regulated cardiac Cx43 expression via a protein kinase A and MAPK-regulated pathway, possibly involving AP1 and CREB. Cardiomyopathy altered Cx43 expression and distribution. [source] |