cpDNA Haplotype (cpdna + haplotype)

Distribution by Scientific Domains


Selected Abstracts


Associations among cytoplasmic molecular markers, gender, and components of fitness in Silene vulgaris, a gynodioecious plant

MOLECULAR ECOLOGY, Issue 3 2003
D. E. Mccauley
Abstract It has been suggested that the dynamics of chloroplast DNA (cpDNA) or mitochondrial DNA (mtDNA) genetic markers used in studies of plant populations could be influenced by natural selection acting elsewhere in the genome. This could be particularly true in gynodioecious plants if cpDNA or mtDNA genetic markers are in gametic disequilibrium with genes responsible for sex expression. In order to investigate this possibility, a natural population of the gynodioecious plant Silene vulgaris was used to study associations among mtDNA haplotype, cpDNA haplotype, sex and some components of fitness through seed. Individuals were sampled for mtDNA and cpDNA haplotype as determined using restriction fragment length polymorphism (RFLP) methods, sex (female or hermaphrodite), fruit number, fruit set, seeds/fruit and seed germination. The sex of surviving germinating seeds was also noted. All individuals in the population fell into one of two cytoplasmic categories, designated haplotypes f and g by a unique electrophoretic signature in both the mtDNA and cpDNA. The subset of the population carrying haplotype g included a significantly higher proportion of females when compared with the sex ratio of the subset carrying the f haplotype. Haplotype g had a significantly higher fitness when measured by fruit number, fruit set and seeds/fruit, whereas haplotype f had significantly higher fitness when measured by seed germination. Offspring of individuals carrying haplotype g included a significantly greater proportion of females when compared with offspring of individuals carrying the f haplotype. Other studies of gynodioecious plants have shown that females generally have higher fitness through seed than hermaphrodites, but in this study not all fitness differences between haplotypes could be predicted from differences in haplotype-specific sex ratio alone. Rather, some differences in haplotype-specific fitness were due to differences in fitness between individuals of the same sex, but carrying different haplotypes. The results are discussed with regard to the potential for hitchhiking selection to influence the dynamics of the noncoding regions used to designate the cpDNA and mtDNA haplotypes. [source]


Likely multiple origins of a diploid hybrid sunflower species

MOLECULAR ECOLOGY, Issue 9 2002
A. E. Schwarzbach
Abstract The recurrent origin of diploid hybrid species is theoretically improbable because of the enormous diversity of hybrid genotypes generated by recombination. Recent greenhouse experiments, however, indicate that the genomic composition of hybrid lineages is shaped in part by deterministic forces, and that recurrent diploid hybrid speciation may be more feasible than previously believed. Here we use patterns of variation from chloroplast DNA (cpDNA), nuclear microsatellite loci, cross-viability and chromosome structure to assess whether a well-characterized diploid hybrid sunflower species, Helianthus anomalus, was derived on multiple occasions from its parental species, H. annuus and H. petiolaris. Chloroplast DNA and crossability data were most consistent with a scenario in which H. anomalus arose three times: three different H. anomalus fertility groups were discovered, each with a unique cpDNA haplotype. In contrast, there was no clear signature of multiple, independent origins from the microsatellite loci. Given the age of H. anomalus (> 100 000 years bp), it may be that microsatellite evidence for recurrent speciation has been eroded by mutation and gene flow through pollen. [source]


Molecular evidence for the hybrid origin of a new endemic species of Stylosanthes Sw. (Fabaceae) from the Mexican Yucatán Peninsula

BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2002
JACQUELINE VANDER STAPPEN
Stylosanthes aff. calcicola is a formally undescribed tetraploid species from the Mexican Yucatán Peninsula, showing morphological similarities to the diploid species S. calcicola, but distinct in a number of characters. We used uni- and biparentally inherited molecular markers to infer the hybrid origin of this species in relation to known diploid species of Stylosanthes. Molecular characterization was based on length and/or DNA sequence variation of nuclear sequence-tagged site (STS) markers, the internal transcribed spacer (ITS) region of nuclear rDNA and the trnL intron of chloroplast DNA (cpDNA). Stylosanthes aff. calcicola contains a distinct cpDNA haplotype and nuclear DNA fragment, with closest relationship to the diploid species S. calcicola. In contrast, the DNA sequences of two nuclear loci reveal a closer relationship to the diploid species S. angustifolia, S. hispida, S. humilis, S. leiocarpa and S. viscosa. The majority of the STS markers showed additivity of PCR fragments in S. aff. calcicola, representing the combination of two genetically different genomes. We postulate that S. aff. calcicola is a distinct species of allotetraploid origin that appears to have originated once from hybridization between two divergent genomes, of which the maternal and paternal parent are closely related to, or derived from, a member of the lineages represented by S. calcicola and S. viscosa, respectively. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 140, 1,13. [source]


Contrasting phylogeographical patterns of two closely related species, Machilus thunbergii and Machilus kusanoi (Lauraceae), in Taiwan

JOURNAL OF BIOGEOGRAPHY, Issue 5 2006
Su-Hwa Wu
Abstract Aim, The purpose of this paper was to study the patterns of genetic variation, demographic history, haplotype relationships and potential location of diversity centres of two closely related species, Machilus thunbergii and Machilus kusanoi. Location, The phylogeography of M. thunbergii and M. kusanoi was examined by sampling 110 and 106 individuals from 25 and 16 sampling sites, respectively, across their distributional range in Taiwan. Machilus thunbergii is distributed on the Asian mainland, South Korea, southern Japan, the Ryukyus, Taiwan and the Philippines, whereas M. kusanoi is endemic to Taiwan. These two species are closely related, and both are widely distributed in Taiwan but occupy different altitudinal zones and habitats. Methods, The range-wide variation of M. thunbergii and M. kusanoi in Taiwan was studied using chloroplast DNA (cpDNA) variations. A haplotype network was constructed with the computer program tcs. Nested clade analysis was conducted with the computer program ceodis, and various parameters of genetic diversity were calculated and neutrality tested by the computer program DnaSP. Population differentiation was estimated using the programs arlequin and hapstep. The contribution of the populations to gene diversity and to allelic richness was calculated using the software contrib. The level of divergence for each population from the remaining populations was calculated as the mean value of pairwise FST for each population against the rest of the populations. Results, Extremely low levels of genetic differentiation were found for both species. This result suggested that these two species probably survived in multiple relict refugia with different population sizes throughout the island during low-temperature periods of the Pleistocene. In addition, nested clade analysis (NCA) of cpDNA haplotypes indicated that restricted gene flow with isolation-by-distance characterized the recolonization after the Pleistocene by Tashueshan and Shiouhluan populations of M. thunbergii in the north-central area west of the Central Mountain Range (CMR). In contrast, NCA analysis indicated that a major diversity centre on the southern tip of the island (Kending population) and contiguous range expansion characterized the recolonization by M. kusanoi of northern areas along the east side of the CMR. The major diversity centres found for the two species examined were further supported by the results of the mean FST for individual populations in comparison with other populations, and of the contribution of the divergence component to the total diversity. Main conclusions, This research supports the multiple relict refugia hypothesis for both species investigated. Populations of M. thunbergii at Shiouhluan and Tashueshan in the north-central area west of the CMR represent a diversity centre currently expanding its size. A diversity centre at the southern-edge population of M. kusanoi, and a contiguous range expansion from Kending, were found. These results indicate that the M. thunbergii populations at Tashueshan and Shiouhluan and the M. kusanoi population at Kending, and even Soukar, are evolutionarily significant units for conservation programmes. [source]


The linkage disequilibrium between chloroplast DNA and mitochondrial DNA haplotypes in Beta vulgaris ssp. maritima (L.): the usefulness of both genomes for population genetic studies

MOLECULAR ECOLOGY, Issue 2 2000
B. Desplanque
Abstract The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR,RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale. [source]


Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae)

NEW PHYTOLOGIST, Issue 4 2006
Wenhua Yang
Summary ,,The Chrysanthemum indicum polyploid complex comprises morphologically differentiated diploids, tetraploids and hybrids between C. indicum and C. lavandulifolium. The relationships between species and cytotypes within this complex remain poorly understood. ,,Random amplified polymorphic DNAs (RAPDs), intersimple sequence repeats (ISSRs) and chloroplast SSR markers were used to elucidate the genetic diversity and relationships of the C. indicum polyploid complex. ,,Molecular analysis of three diploid and nine tetraploid populations provided strong evidence for recurrent origins and lineage recombination in the C. indicum polyploid complex. The high similarity in molecular marker profiles and cpDNA haplotypes between the diploids and tetraploids distributed in the Shen-Nong-Jia Mountain area of China suggested an autopolyploid origin of the tetraploids, while the tetraploids from other populations may have originated via allopolyploidization. Lineage recombination was revealed by the extensive sharing of chloroplast haplotypes and genetic markers among the tetraploid populations with different origins. ,,Multiple differentiation and hybridization/polyploidization cycles have led to an evolutionary reticulation in the C. indicum polyploid complex, and resulted in the difficulties in systematic classification. [source]